
CREXDATA has received funding from the European Union's Horizon

Europe programme under grant agreement number 101092749.

D4.1 Initial Report on Complex Event Forecasting,

Learning and Analytics

Version 1.0

Documentation Information

Contract Number 101092749

Project Website https://crexdata.eu/

Contractual Deadline M18, 06.2024

Dissemination Level PU

Nature R

Author Elias Alevizos

Contributors

C Akasiadis, E Alevizos, G Anestis, A Artikis, D Banelas, A
Deligiannakis, M Ebel, A B Eguzkitza, G Frangias, G Grigoropoulos, I
Chamatidis, A. Troupiotis- Kapeliaris, E. Filippou, N Giatrakos, M Juvillà,
E Pitsikalis, P Mantenoglou, A Montagud, G Katsimpras, I Martinez, M
Melero, T Ntiniakou, J Orama, G Paliouras, M Ponce de Leon, J
Pottenbaum, V Samoladas, M Theologitis

Reviewer Gennady Andrienko

Keywords

Complex event recognition, complex event forecasting, Bayesian
optimization, optimization, cloud, edge, fog, data streams, federated
machine learning, multilingual text mining, question answering, event
detection, information extraction

Ref. Ares(2024)4707733 - 30/06/2024

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

2

Change Log

Version Author Date Description Change

V0.1 All authors 29/05/2024 First complete version

V0.2
Elias Alevizos
(NCSR)

30/05/2024 Merging, formatting, cleaning up

V0.3
Elias Alevizos
(NCSR)

31/05/2024 Minor corrections before internal review

V0.4 All authors 17/6/2024 Incorporating comments from internal review

V0.9
Elias Alevizos
(NCSR)

21/6/2024 Finalization

V1.0
Antonios
Deligiannakis (TUC)

26/6/2024 Final version

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

3

Contents

Executive Summary .. 10

1 Introduction .. 12

1.1. Purpose and Scope ..12

1.2. Relation to other Deliverables ...12

1.3. Source code availability ..12

1.4. Structure of the Deliverable ..13

2 Multi-Resolution Complex Event Forecasting ... 14

2.1. Online optimization of Complex Event Forecasting ...14

2.2. Complex Event Recognition with Symbolic Register Transducers22

2.3. Complex Event Recognition with Allen Relations ..28

2.4. Components for Critical Maritime Event Forecasting and Resolution29

3 Interactive Learning for Simulation Exploration .. 36

3.1. Emergency Use-Case ...36

3.2. Health Crisis Use-Case ..41

3.3. Maritime Use-Case ...46

3.4. Methods for the Exploration of Simulations Parameter Space48

4 Federated Machine Learning ... 52

4.1. Related Work for Distributed & Federated Learning and Drawbacks52

4.2. Relation to Use Cases ..54

4.3. Functional Dynamic Averaging ...54

4.4. Extending TensorFlow and KungFu to support FDA workflows57

4.5. Experiments & Comparison to Prior Work ...58

4.6. FDA in NeRF computation for the Weather Emergencies Use Case66

5 Optimized Distributed Analytics as a Service .. 69

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

4

5.1. Motivation and Optimization Aspects in CREXDATA ..69

5.2. Optimization Setup ...72

5.3. Algorithmic Suite ...74

5.4. Statistics Collection and the Need for Simulators ..79

5.5. Experimentation ..81

6 Text mining for Event Extraction .. 84

6.1. BERT Based Event Type Classifier ..84

6.2. Question Answering for Event Information Extraction ...89

7 Progress achieved towards the CREXDATA objectives .. 97

8 Acronyms and Abbreviations ... 98

9 References ... 99

10 Appendix 1 ... 108

10.1. Appendix for Online Optimization of Complex Event Forecasting 108

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

5

List of Figures

Figure 1: Streaming symbolic automaton created from the speed related expression.16

Figure 2: Offline CEF optimiser. ..17

Figure 3: Architecture of RTCEF. Cylinders and rounded rectangles denote topics and

services respectively. For simplicity, we omit synchronisation topics; instead we use grey

arrows. ..19

Figure 4: Experimental results for datasets MD{0/1/8} with Rport. 'rt' and 'opt' denote 'retrain'

and 'optimisation'. Upper plots show MCC over time; lower plots show improvement.21

Figure 5: Avg MCC (left-a, left-b) per FDi. Dataset and CER characteristics (right-a). ‘v’,

‘vw/m’ and ‘m’ stand for ‘vessels’, ‘vessels with matches’ and ‘matches’. MPPT (right-b) per

MDi for Rport. ..22

Figure 6 Throughput for sequential patterns with n-ary predicates as a function of pattern

length. Window sizes are wstock = 500, wsmart = 5, wtaxi = 100.26

Figure 7 Throughput for sequential patterns with n-ary predicates as a function of window

size. Pattern length is 3. ..27

Figure 8 Throughput for patterns with n-ary predicates and various operators. w = 1000. .27

Figure 9: Left: COLREG regions for vessel-to-vessel interaction classification [37]. Right:

Optimal path planning and velocity adaption of a vessel with green being the final COLREG

compliant optimal trajectory generated in each subsequent replanning step, black the

COLREG compliant valid trajectories, and gray the invalid alternatives in each replanning

step t. Image adapted from [36]. ..30

Figure 10: Vessel collision avoidance workflow ...30

Figure 11: Example of a head on collision and the generated COLREG compliant collision

avoidance path ..31

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

6

Figure 12: Visualization of the 2022 hurricane events (their paths) along the North Atlantic

Ocean ...32

Figure 13: a) Disruption of maritime traffic caused by Storm Ciarán that severely affected

parts of Europe and the North Atlantic from late October to early November 2023. b)

Comparison with the 6.11.2023, after the storm has calmed under normal weather

conditions. Heatmap visualizes the wave height – direction. Different vessel types sailing in

the area are visualized as triangles with colours indicating the different vessel type.32

Figure 14: Mapping of weather features on the H3 index (example for NOAA wind dataset)

..33

Figure 15: Download and fusion process of weather data from NOAA and Copernicus (Task

groups) ..34

Figure 16: Statistics extraction and weather forecasts scale categorization process step for

each weather parameter. Example showcases the task groups for days 0 (current) to 3 (Total

task groups reach up to day 9) ..34

Figure 17: Hazardous weather routing methodological workflow35

Figure 18: Adoption of the simulator architecture [D2.1] ..37

Figure 19: Visualisation of an excerpt from the context data used for simulations38

Figure 20: Output data from a sample simulation run (executed for a duration of 4 hours, in

equal time steps of 60 seconds each) for total water depth in nodes (N11, N3, …) and links

(L10, L2, …) in time steps 00:3:54:00 to 04:00:00 from res1d file and water level for grid

elements in time steps 00:00:00 to 00:07:00 from dfsu/dfs2 file ..39

Figure 21: (Left) A schematic of the interconnection between PhysiBoSS and Alya, the

simulators, with the different components from the WP4 that will help with the calibration, the

exploration and the interventions. (Right) Time-series example and illustration of the

alternative interventions. ...42

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

7

Figure 22: Model exploration workflow for the epidemiological scenario.43

Figure 23: Vessel collision avoidance interactive simulator ...48

Figure 24: Preliminary results of the ETSC algorithms applied on the Multiscale Simulations

CREXDATA sub-use-case. ...50

Figure 25: LeNet-5 on MNIST ...61

Figure 26: VGG16* on MNIST ...62

Figure 27: DenseNet121 and DenseNet201 on CIFAR-10 ..62

Figure 28: Training accuracy progression with a (test) accuracy target of 0.8 (left), and 0.78

(right). A smaller final gap between training and target accuracy indicates less overfitting,

i.e., better generalization capabilities of the trained model ..63

Figure 29: VGG16* on MNIST – Accuracy Target: 0.994 ..63

Figure 30: DenseNet121 on CIFAR-10 – Accuracy Target: 0.8 ...64

Figure 31: DenseNet201 on CIFAR-10 – Accuracy Target: 0.7864

Figure 32: Empirical Estimation of the Variance Threshold ..65

Figure 33: ConvNeXtLarge on CIFAR-100 (transfer learning from ImageNet) — Deployment

of FDA during the fine-tuning stage with Accuracy Target of 0.7666

Figure 34: Communication time distribution with variable topology66

Figure 35: Experimental setup ..68

Figure 36: Logical Plan and Physical Network. The CREXDATA Optimized Analytics as a

Service should device the placement of Logical Plan Operators to Physical Devices70

Figure 37: Different physical plans prescribed as time passes from t0 to tk+2......................71

Figure 38: Illustration of Pareto Optimal Physical Plans ..72

Figure 39: Two Nodes of the Graph of Graphs representation of the CREXDATA streaming

analysis as a service ...73

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

8

Figure 40: Graph of graphs (GoG) as the search space encompassing all possible physical

plans - workflows for a given set of workflows and a network setting. Each node in the figure

includes a nested graph which is a physical plan/workflow. Edges correspond to simple,

single actions (changes) leading from one physical workflow to another.74

Figure 41: Illustration of the Greedy Search Algorithm Operation77

Figure 42: Illustration of the Random Sampling Search Algorithm Operation78

Figure 43: CREXDATA Simulator Executor and Statistics Collector significantly extending

iFogSim ...81

Figure 44: TRAIN workflow used in our experimental evaluation82

Figure 45: Scalability Analysis and Parameter Tuning for the CREXDATA Algorithmic Suite

(ESC, RSS, GSP Algorithms) ..83

Figure 46: Architecture ..85

Figure 47 The system architecture of the QA model. ...91

Figure 48: Experimental results for datasets FD{0/3/5} with Rcards. 'rt' and 'opt' denote

'retrain' and 'optimisation'. Upper plots show MCC over time, while lower plots show

improvement. .. 111

Figure 49: Avg MCC per FDi for Rcards. ... 111

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

9

List of Tables

Table 1: An example stream composed of five events. Each event has a vessel identifier, a

value for that vessel's speed and a timestamp. ...16

Table 2: Overview of possible interactive learning scenarios for the EmCase.40

Table 3: Epidemiological parameters of the MMCACovid19-vac infectious model.44

Table 4: Parameters to model the intervention to control the epidemic.45

Table 5: Interactive simulation scenario specifications for the Maritime Use Case

components ..46

Table 6: Setup ...58

Table 7: Candidate simulators and their adoption/popularity, metrics collection, cloud to edge

continuum coverage features ..79

Table 8: Finetuning methods comparisons. The best performing result is indicated in bold.

The second best is underlined for comparison. ...88

Table 9: Comparison of base models with a finetuned model. The best performing result is

indicated in bold. The second best is underlined for comparison.89

Table 10: Comparison of base models fine-tuned for event type prediction.90

Table 11: Results on the CrisisFACTS 2022 dataset. The best performing result is indicated

in bold. The second-best is underlined for comparison. ...94

Table 12: Results on DL19 and DL20. The best performing result is indicated in bold. The

second best is underlined for comparison. ..95

Table 13: Results on BEIR. Best performing is marked bold. The second-best is underlined

for comparison. ...96

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

10

Executive Summary

The "CREXDATA Deliverable 4.1" report presents a comprehensive analysis and evaluation
of the CREXDATA project, focusing on the development and implementation of advanced
data processing techniques for real-time complex event processing. The project employs a
distributed architecture using Kafka to facilitate communication between multiple services,
ensuring efficient and scalable data handling. This architecture supports the integration and
coordination of diverse data sources, enhancing the system's ability to process high volumes
of data in real time.

Key contributions include the introduction of Symbolic Regular Expressions with Memory
and Output (SREMO), which enhance the detection of complex relational patterns through
nested operators and n-ary expressions. This innovative approach significantly improves the
accuracy and efficiency of pattern recognition in real-time data streams, providing robust
solutions for various applications. We also present a method for optimizing our Complex
Event Forecasting engine in an online manner. This is a first step towards fine-tuning our
engine for multi-resolution forecasting. It then presents an extension of our forecasting
engine so that it can handle more expressive patterns.

With respect to critical maritime events, the document presents the components developed
for forecasting and resolving vessel-to-vessel collisions and for hazardous weather rerouting
at sea in the face of extreme weather events.

We then present the simulation scenarios from all three CREXDATA use-cases. Also, we
provide an overview of the methods that we are going to apply for interactive simulation
parameters exploration.

The report includes a detailed scalability analysis and parameter tuning of the algorithms
used within the CREXDATA framework. This analysis underscores the importance of
parallelization in optimizing the execution time of algorithms over networks composed of
hundreds or thousands of devices. By effectively managing the computational load across
multiple devices, the project ensures that the system can handle large-scale data processing
tasks with high efficiency. This scalability is crucial for applications that require real-time
processing of vast amounts of data, such as monitoring and responding to natural disasters.

Our work on Federated Machine Learning, presented next, focused on developing
Functional Dynamic Averaging, a bandwidth-efficient technique for Federated Deep
Learning. Comparison to previous state-of-the-art indicates orders-of-magnitude efficiencies
in communication cost, especially in Computer Vision problems related to the Weather
Emergency use case.

The algorithmic suite CREXDATA incorporates to support its overall architectural framework
with optimized analytics as a service (i.e., attributing resources to the lot of CREXDATA
extreme scale analytics workflows, on demand, simultaneously achieving good
performance) is presented afterwards.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

11

Next, we present a social media toolkit developed to monitor and extract key information
from social networks to aid civil protection authorities during weather emergencies. This
toolkit consists of a stream-enabled multilingual language model for event type detection,
and a question answering model for extracting information from relevant social media posts.
The report delves into the challenges and solutions associated with acquiring and mining
useful information about emerging events from multilingual social media posts. These posts,
often published by local government agencies or individuals directly involved in
emergencies, provide valuable real-time perspectives. However, the unstructured and often
ungrammatical nature of social media content, combined with its multilinguality, poses
significant challenges. The project addresses these issues by developing advanced text
mining algorithms that support civil protection authorities in responding to weather-induced
emergencies, thus improving the overall efficiency and effectiveness of emergency response
strategies.

Overall, the deliverable demonstrates substantial advancements in real-time data
processing, contributing valuable methodologies and tools for emergency response and
complex event detection. The CREXDATA project's innovations in distributed architectures,
pattern recognition, and text mining represent significant strides in the field, offering practical
solutions to real-world problems. This report not only highlights the technical achievements
of the project but also emphasizes its potential impact on enhancing the responsiveness and
effectiveness of emergency management systems.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

12

1 Introduction

This document presents the progress of the CREXDATA project with respect to Complex
Event Forecasting, Learning and Analytics. WP4 develops the forecasting, learning and
scalability tools for analytics and distributed ML of CREXDATA. The tools developed in WP4
take into account the forecasting and scalability requirements that are specific to the use
cases of WP2.

1.1 Purpose and Scope

The reader is expected to be familiar with Complex Event Forecasting, Artificial Intelligence,
Federated Learning, Text Mining and Distributed processing techniques, as well as the
general intent and concept of the CREXDATA project. The target readership is:

• CREXDATA researchers

• CREXDATA audit

CREXDATA focuses on event forecasting, interactive and federated machine learning and
text mining techniques for large scale data. This document presents the current
advancements and discusses the scientific and technological issues that are being
investigated in Work-Package 4, with respect to Complex Event Forecasting, Learning and
Analytics.

1.2 Relation to other Deliverables

This document is related to the following project deliverables:

• D2.2 Initial Use Case Evaluation, Pilots, Demonstrators and Simulation Models and
Tools;

• D3.1 Initial Report on System Architecture, Integration and Released Software
Stacks.

1.3 Source code availability

CREXDATA has promised to deliver the source code of its solutions. Below we provide a list
of source code repositories related to the present deliverable. Please note that some of the
repositories may be anonymous because the relevant papers have not been published yet.

• Repositories for Task 4.1
o https://github.com/ElAlev/Wayeb
o https://github.com/manospits/rtcef
o https://github.com/ElAlev/cer-srt

• Repositories for Task 4.2
o https://github.com/xarakas/ETSC

• Repositories for Task 4.3

https://github.com/ElAlev/Wayeb
https://github.com/manospits/rtcef
https://github.com/ElAlev/cer-srt
https://github.com/xarakas/ETSC

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

13

o https://github.com/miketheologitis/FedL-Sync-FDA
o https://github.com/miketheologitis/TFD-FedL-Sync-FDA
o https://github.com/gfrangias/KungFu

• Repositories for Task 4.4
o https://github.com/DBanelas/crexdata-optimizer
o https://github.com/DBanelas/placement-simulation-suite

• Repositories for Task 4.5
o https://github.com/langtech-bsc/crexdata-task4.5
o https://anonymous.4open.science/r/genra-BB1B

1.4 Structure of the Deliverable

This document has the following structure:

• Section 2 presents a method for optimizing our Complex Event Forecasting engine
in an online manner. This is a first step towards fine-tuning our engine for multi-
resolution forecasting. It then presents an extension of our forecasting engine so that
it can handle more expressive patterns and our work of extending an event
recognition engine with complex temporal relations. Finally, the components for
forecasting and resolving critical maritime events are presented.

• Section 3 presents the simulation scenarios from all three CREXDATA use-cases.
Also, we provide an overview of the methods that we are going to apply for interactive
simulation parameters exploration, such as active learning, optimization of
interventions, early time-series classification, and reinforcement learning.

• Section 4 presents our work on Federated Machine Learning. It focuses on
developing Functional Dynamic Averaging, a bandwidth-efficient technique for
Federated Deep Learning. Comparison to previous state-of-the-art indicates orders-
of-magnitude efficiencies in communication cost, especially in Computer Vision
problems related to the Weather Emergency use case.

• Section 5 presents the CREXDATA optimization approach which automates the
process of mapping logical workflows (workflows which only describe the application
logic, being deprived of any physical execution aspect) to physical workflows
deployable across the networked settings over which CREXDATA operates. It details
the optimization algorithmic suite of CREXDATA and explains the way it optimizes
the execution of arbitrarily many workflows over arbitrarily many devices, under
arbitrarily many physical execution options in volatile streaming and network settings.

• Section 6 presents the text mining algorithms and language models developed for
monitoring and extracting key information about weather emergencies from social
media messages. It details the language model for event type detection, the module
for information extraction, and the design decisions in each step.

https://github.com/miketheologitis/FedL-Sync-FDA
https://github.com/miketheologitis/TFD-FedL-Sync-FDA
https://github.com/gfrangias/KungFu
https://github.com/DBanelas/crexdata-optimizer
https://github.com/DBanelas/placement-simulation-suite
https://github.com/langtech-bsc/crexdata-task4.5
https://anonymous.4open.science/r/genra-BB1B

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

14

2 Multi-Resolution Complex Event Forecasting

In this Section, we present our work for multi-resolution Complex Event Forecasting (CEF).
Our work is based on an already existing forecasting engine which we have developed in
previous projects, called Wayeb1 [1] [2]. Wayeb is a forecasting engine which employs
symbolic automata as its computational model. Wayeb is both efficient and expressive, while
maintaining clear, compositional semantics for the patterns expressed in its language due to
the fact that symbolic automata have nice closure properties. At the same time, it is
expressive enough to support most of the common Complex Event Recognition operators.
Specifically, our contributions for the first half of the project are the following:

• Section 2.1 presents RTCEF, an open-source novel framework for run-time
optimisation of CEF. More specifically, RTCEF, aims to facilitate online CEF
training/hyperparameter optimization over streams with constantly evolving
conditions. We evaluate RTCEF on two real-world use-cases from the maritime and
financial domains and our reproducible results show that RTCEF can significantly
improve forecasting performance with minimal lag upon run-time changes. For the
second half of the project, the goal is to extend this optimization technique in order
to target forecasting at multiple temporal resolution / earliness values.

• Section 2.2 presents an extension of Wayeb which allows it to handle more
expressive patterns, required for the CREXDATA project. Wayeb can now
accommodate patterns with relational constraints, e.g., a decreasing trend in the
number of COVID cases. We present a summary of our results in order to make the
deliverable succinct. A complete description of our work may be found in an extended
technical report2.

• Section 2.3 presents an extension of another event recognition engine that we have
at our disposal, RTEC3. The engine is extended so as to be able to handle relations
expressed in Allen’s interval algebra, thus significantly increasing its expressive
power.

2.1 Online optimization of Complex Event Forecasting

CEF, among other reasoning tasks, operates over constantly evolving conditions. Take for
example the problem of maritime route optimisation. Vessels may follow a different route
depending on the weather conditions or in general the season of the year [3]. Another
example is financial fraud detection—fraudsters constantly adapt their tactics to avoid getting
caught. While such problems can be treated by offline trained models for a given time period,
in practice, such models fall short in settings where dynamic changes that invalidate previous
training data are present. CEF systems in particular, typically, rely on probabilistic models
trained on historical data [4] [5] [1]. This renders CEF systems inherently susceptible to
evolutions in the input that can invalidate their underlying models—recall the example
mentioned earlier relating maritime routes with weather. Additionally, as with the majority of

1 https://github.com/ElAlev/Wayeb
2 https://github.com/ElAlev/cer-srt/blob/main/docs/cer-srt-extended-report.pdf
3 https://github.com/aartikis/RTEC

https://github.com/ElAlev/Wayeb
https://github.com/ElAlev/cer-srt/blob/main/docs/cer-srt-extended-report.pdf
https://github.com/aartikis/RTEC

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

15

trainable models, CEF models have multiple hyper-parameters that require fine tuning for
optimal performance. Wayeb [2], one of the first CEF engines, is no exception to the above.
In prior work [6], a methodology for hyper-parameter optimisation, specifically tailored for
Wayeb, was proposed. While this method can successfully find near-optimal hyper-
parameters in the offline setting, it cannot handle dynamic evolutions of the input that can,
in the future, deteriorate CEF performance.

To address the above challenges, we propose RTCEF a novel framework for Run-Time
optimisation of CEF. RTCEF4, adopts a distributed architecture comprising several services
communicating via Kafka [7] [8] [9], and allows run-time update of CEF models. In other
words, it supports continuous adaptation to dynamic changes in the input stream while also
ensuring little to no downtimes in CEF. Since hyper-parameter optimisation is an expensive
procedure, RTCEF employs a trend-based policy which allows, in addition to hyper-
parameter tuning, CEF re-training without changing hyper-parameters. The contributions of
this work are thus the following: (a) we introduce RTCEF, an open-source novel framework
for run-time optimisation of CEF; (b) the distributed architecture we employ allows CEF to
run in parallel to training, or optimisation tasks, therefore ensuring no disruptions; (c) we
extensively evaluate RTCEF on two real-world use-cases from the maritime and financial
domains; (d) our reproducible results show that RTCEF can significantly improve forecasting
performance with minimal lag upon run-time changes.

2.1.1 Background

Complex Event Forecasting

CEF is a task that allows forecasting CEs of interest over an input stream of low level events;
e.g., timestamped position messages of maritime vessels, or credit card transactions.
Forecasts involve the occurrence of a CE in the future accompanied by a degree of certainty
[2]. This behaviour is usually derived from stochastic models that project into the future
evolutions of the input that can cause a detection of a CE. For the task of CEF, we utilise
Wayeb, a CEF engine which employs symbolic automata as its computational model. Wayeb
has clear, compositional semantics for the patterns expressed in its language and can
support most of the common operators [10]. Wayeb’s patterns are expressed as Symbolic
Regular Expressions (SREs), where terminal expressions are Boolean expressions, i.e.
logical formulae that use the standard Boolean connectives. Formally, Wayeb SRE(s) are
defined using the grammar below:

R ∷= 𝑅1 + 𝑅2(union) | 𝑅1 ⋅ 𝑅2 (concatenation) | 𝑅1
∗ (Kleene-star)

 | ! 𝑅1(complement) | ψ (Boolean Expression)

where 𝑅1, 𝑅2 are also regular expressions, and ψ is a Boolean expression. The semantics
of the above operators are detailed in [2]. Evaluation of SRE on a stream of events requires
first their compilation into symbolic automata. Transitions in symbolic automata are labelled
with Boolean expressions. For a symbolic automaton to move to another state, it first applies
the Boolean expressions of its current state's outgoing transitions to the element last read
from the stream. If an expression is satisfied, then the corresponding transition is triggered
and the automaton moves to that transition's target state. For example, in a maritime
monitoring scenario, a domain expert could use Wayeb’s language to specify a pattern R  ≔
 (speed  >  10)  ⋅  (speed  >  10) for identifying speed violations in specific areas where the

4 https://github.com/manospits/rtcef

https://github.com/manospits/rtcef

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

16

maximum allowed speed is 10 knots. This pattern is satisfied when there are two consecutive
events where a vessel's speed exceeds the threshold. We require two consecutive violations
in order to avoid situations where the vessel has only a momentary or random lapse.

Table 1: An example stream composed of five events. Each event has a vessel
identifier, a value for that vessel's speed and a timestamp

vessel id 78986 78986 78986 78986 78986 …

speed 5 3 9 14 11 …

timestamp 1 2 3 4 5 …

Figure 1: Streaming symbolic automaton created from the speed related expression

The compiled automaton corresponding to 𝑅 is illustrated in Figure 1. For an input stream
consisting of the events in Table 1 the automaton would run as follows. For the first three
input events, the automaton remains in state 0. After the fourth event, it moves to state 1
and after the fifth event it reaches its final state, state 2, triggering also a CE detection for 𝑅

at timestamp  =  5.

To perform CEF, we need a probabilistic description for a symbolic automaton derived from
a SRE. For this purpose, we employ Prediction Suffix Trees (PSTs) [11] [12]—a form of
Variable-order Markov Models (VMM). VMMs, compared to fixed-order Markov models,
capture longer-term dependencies as in practice they allow for higher order (𝑚) values than
the latter. Each node in a PST, contains a ‘’context’’ and a distribution that indicates the
probability of encountering a symbol, conditioned on the context. Figure 2 (top left) shows
an example of a PST. Each ‘’symbol’’ of a PST corresponds to a predicate of the automaton
for which we want to build a probabilistic model. Consequently, with the use of a PST, for
every state 𝑞 of an automaton, we can calculate the waiting-time distribution (Wq), that is,

the probability of reaching a final state in 𝑛 transitions from state 𝑞. Recall that a CE is
detected whenever an automaton reaches a final state. Figure 2 (middle and bottom left)
shows an example of an automaton and the waiting-time distributions learned from a training
dataset. Taking all of the above into account, Wayeb performs CEF as follows. Given the
current state 𝑞 of an automaton, using Wq, it computes the probability of reaching a final

state (pCE) within the next 𝑛 transitions (or, equivalently, input events). If pCE exceeds a
confidence threshold θfc ∈ [0,1], Wayeb emits a ‘’positive’’ forecast (denoting that the CE is
expected to occur), otherwise a ‘’negative forecast’’ (no CE is expected) is emitted.

The above discussion illustrates the need for optimising multiple hyper-parameters. For
example, although setting the maximum order 𝑚 of the VMM generally improves accuracy,

it leads to longer training times. Similarly, finding the optimal value for θfc is a crucial step as
low or high θfc values can cause many false positives or false negatives respectively.
Manually fixing the above parameters would lead to severely sub-optimal results. On the
contrary, exhaustive parameter space exploration is of high computational complexity
making it prohibitive for run-time settings. To address these issues, we employ Bayesian

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

17

optimisation to efficiently explore only a small fraction of the parameter space and learn the
optimal hyper-parameter values for the entire parameter space.

Offline Optimisation

In prior work [6] a framework for offline hyper-parameter optimisation of CEF was introduced.
The offline CEF optimiser of [6] and RTCEF utilise Bayesian optimisation as the underlying
mechanism for hyper-parameter calibration. Bayesian Optimisation (BO) [13] [14] is a
stochastic method used for optimising costly objective functions that are complex or
unknown. In our context, the objective function describes the performance of a CEF system.
Therefore, the goal of BO is to find the vector of system parameters that maximises CEF
performance, using a targeted, minimal set of system runs, termed ‘micro-benchmarks’
(essentially function evaluations), as training samples. We want to achieve the best possible
CEF performance using as few micro-benchmarks as possible; this is a setting where BO
perfectly fits [13] [14] [6]. BO employs a surrogate model, usually a Gaussian Process (GP)
Regressor (GPR), to approximate the objective function and iteratively refines this model.
Priors about the objective function, often for the mean and covariance functions of the GP
model, are set before any data observation. Every time we observe a new micro-benchmark
and collect system performance metrics, we acquire a training sample to fit on the GPR,
thereby updating our posterior belief in light on new evidence. In this work, the posterior
distribution represents our updated knowledge about the CEF system's performance. The
posterior distribution after observing 𝑛 new training samples (i.e., system runs in our case)
is given by the surrogate model that has been updated with the newly acquired knowledge
about CEF performance under a new hyper-parameter combination using Bayesian
inference (see for example [6]).

Micro-benchmark selection starts with an initial set chosen randomly from the input
parameter domain; we execute respective micro-benchmarks and observe performance
metrics in a set Dinit. Subsequent micro-benchmarks are selected by an acquisition function
(e.g., Expected Improvement) which balances exploration of unexplored regions and
exploitation of current knowledge to identify points likely to yield the best performance. For
instance, in the plot at the bottom right of Figure 2, the acquisition function chooses the point
in the input domain with the highest uncertainty. BO concludes either when a micro-
benchmark budget is depleted or when the optimal value for the objective function
converges. The plot at the top right of Figure 2 illustrates a GPR with minimal uncertainty
around its mean values, after the microbenchmark budget has been fitted.

Figure 2: Offline CEF optimiser

Training

Time

(tt),

Accuracy

(MCC)

Statistics

Collector

m,

pMin,

γ

Benchmarker
• Next c=[m,θfc,pMin,γ] micro-benchmark

• Current optimal copt=[m, θfc, pMin, γ]
if convergence(): deploy copt
else: run micro-benchmark

Training

Data

Validation

Data

Wayeb CEF Engine
Learning a prediction suffix tree

Waiting-time distributions estimation

Construction of forecasts

θfc

BO Cost Modeler

BO (GPR) Model

Acquisition Function

S
c
o
r
e

c

cA
c
q
.

f
u
n
c
.

v
a
l
u
e

Completed micro-

benchmarks

Next micro-benchmark

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

18

The work of [6] introduces the offline CEF optimiser, a framework for offline hyper-parameter
optimisation of CEF. Figure 2 illustrates the offline CEF Optimiser [6], comprising the CEF
Engine alongside Benchmarker, Statistics Collector, and BO Cost Modeller. The CEF Engine
utilises training and validation datasets to construct probabilistic models for Wayeb, while
the remaining components execute BO (offline), as described earlier. The Benchmarker
initialises optimisation by sampling configurations and conducting micro-benchmarks, while
the Statistics Collector gathers performance statistics for the BO Cost Modeller. In this
setting, the relevant performance metrics are Matthew's Correlation Coefficient (𝑀𝐶𝐶) and

training time (𝑡𝑡) combined together in a single formula, i.e. Score(c)  =  w1  ×  MCC(c)  −

 w2  ×   tanh (
tt(c)

θtt
  −  1), where θtt, is a desired, target training time above which 𝑡𝑡 values

get penalised. w1  +  w2  =  1 are weights that allow adjustable emphasis on 𝑀𝐶𝐶 or 𝑡𝑡. The

BO Cost Modeler fits a GPR to Dinit and prescribes subsequent micro-benchmarks using an
acquisition function. The Benchmarker decides whether optimisation should conclude or
continue based on BO convergence. In the former case, the optimal configuration is
deployed, while in the latter further micro-benchmarks are conducted. This iterative process
ensures the deployment of the most effective CEF Engine configuration while maximising
performance and minimising computational overhead.

On the other hand, the offline CEF optimiser, suffers from several disadvantages: (i) it drives
its decisions by attributing equal importance to all performance metrics, while in a streaming
setup we often need to take into consideration only a sliding window of recent measurements
and defy obsolete ones; (ii) it cannot optimise CEF hyper-parameters at run-time which is a
crucial limitation, since fluctuations in the input's statistical properties in streaming settings
is the norm rather than an infrequent situation; (iii) it cannot distinguish whether model hyper-
parameters should be adjusted due to such statistical changes or if it is only the Wayeb's
internal probabilistic model (PST) that should be re-trained, without hyper-parameter re-
calibration. RTCEF, presented in the next section, addresses all these issues.

2.1.2 Run-time CEF optimisation

RTCEF, is built with two major goals in mind. First it should allow run-time updating of CEF
models for treating input data evolutions that would otherwise lead to deterioration of
forecasting performance; and second, it should perform CEF with no disruptions, i.e. model
updating should not cause delays on CEF. Here, we present the architecture of our
framework from a bird's eye perspective while in Appendix 10.1.1 we describe each service
with more details.

Architectural overview

The architecture of RTCEF consists of five main services, acting as Kafka producers and
consumers, running synergistically to ensure undisrupted CEF as well as dynamic CEF
model retraining or optimisation. Figure 3 illustrates these services and the communication
lines between them. RTCEF is divided into four main parts, namely CEF, data collection,
monitoring of scores, and optimisation or re-training. Below we describe these parts.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

19

Figure 3: Architecture of RTCEF. Cylinders and rounded rectangles denote topics
and services respectively. For simplicity, we omit synchronisation topics; instead

we use grey arrows

CEF. The CEF part contains the forecasting engine service, which in our case is Wayeb.
Wayeb reads timestamped simple events from the input stream, and produces an output
stream of CE forecasts. In parallel, the engine reads from the models topic, which contains
updated model versions, i.e. PSTs. The engine runs undisrupted, pausing momentarily only
for model replacement when needed as explained shortly. Finally, the engine additionally
produces a stream of CEF forecasting performance reports. Recall that Wayeb performs
both CEF and CER, therefore scores can be produced on-the-fly; every forecast can be
evaluated by the presence (or absence) of subsequent CEs.

Data collection. This part of RTCEF handles data collection from the input stream (e.g., a
set of maritime vessel positional messages or credit card transactions). Data collection is
needed as retraining or optimisation procedures require training datasets. In the run-time
setting training datasets evolve over time. Therefore, the data collection part of RTCEF
includes the collector service, a data processing module, that organises and stores,
according to some policy, subsets of the input stream. This ensures that up-to-date datasets
are available for subsequent re-training or optimisation.

Performance monitoring. In order to determine whether the performance of the CEF
engine (i.e., the 𝑀𝐶𝐶 score) has deteriorated, the quality of its forecasts must be monitored.
This task is handled by the observer service which consumes CEF performance reports from
the ‘reports’ topic, and produces ‘retrain’ or ‘optimise’ instructions via a trend-based policy.

Optimisation and re-training. The final part of RTCEF involves two services, a model
factory service, and a controller service. The controller reads the instructions (‘retrain’ or
‘optimise’) of the observer, and accordingly initiates a training or optimisation procedure—
we will refer to both as ‘update model procedure’. For ‘retrain’ instructions, the controller
sends a ‘train’ request to the model factory for producing a model. Respectively, for
‘optimisation’ instructions, the controller initiates an optimisation message exchange with the
factory, whereby the controller sends ‘train & test’ requests, while the factory replies with
performance metrics. In both ‘train’ and ‘train & test’ requests, the controller service supplies
the model hyper-parameters. Note that during an update model procedure, the factory will

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

20

use the latest dataset made available by the collector. When a new model procedure is
completed, the model factory sends a new model version to the ‘Models’ topic.

2.1.3 Experimental evaluation

Experimental setup

We evaluate RTCEF on maritime situational awareness and credit card fraud management.
For a smoother presentation we will omit experiments concerning credit card fraud
management from here and present them later in Appendix (Section 10.1).

Maritime Situational Awareness. We use a real-world, publicly available, maritime dataset
containing 18M spatio-temporal positional AIS (Automatic Identification System) messages
transmitted between October 1st 2016 and 31st March 2026 (6 months), from 5K vessels
sailing in the Atlantic Ocean around the port of Brest, France [15]. AIS allows the
transmission of information such as the current speed, heading and coordinates of vessels,
as well as, ancillary static information such as destination and ship type. We evaluate RTCEF
on a maritime pattern, which expresses the arrival of a vessel at the main port of Brest [6]:

𝑅port  ≔  (¬𝐼𝑛𝑠𝑖𝑑𝑒𝑃𝑜𝑟𝑡(𝐵𝑟𝑒𝑠𝑡)) ∗   ⋅  (¬𝐼𝑛𝑠𝑖𝑑𝑒𝑃𝑜𝑟𝑡(𝐵𝑟𝑒𝑠𝑡))  ⋅

 (¬ InsidePort(Brest))  ⋅   (InsidePort(Brest))

InsidePort(Brest) is true, when a vessel is within 5 km from the port of Brest. Consequently,

Rport is satisfied if a sequence of at least three events occur. The first two require the vessel

to be away from the port—thus limiting false positives from noisy entrances—, while the last
denotes that the vessel has entered the port. This CE is important for port management and
logistics reasons. Furthermore, we perform experiments for a CE termed Rfish, and satisfied
when vessels enter fishing areas and sail with fishing speed. To cross validate our approach,
we create 6 datasets (MDi,  i  ∈  [0,5]) by shifting the starting month in a cyclic manner.

RTCEF initialisation. RTCEF requires an initial forecasting model for the engine. Alongside
this model, the hyper-parameters used for its creation must be provided to the controller,
ensuring their availability for any ‘retrain’ commands. Furthermore, if the initial model was
produced via offline BO (as in [6]) then a sample of its micro-benchmarks can be supplied to
the controller service. If prior samples are not available, then the first ‘optimisation’ call starts
from scratch. Finally, the user must provide a configuration file whereby parameters such as
bucket_size and max_slope are set (see Appendix, Section 10.1).

We perform offline hyper-parameter optimisation on the first four weeks of each dataset MDi
and use the resulting model, hyper-parameters and micro-benchmark samples for
initialisation. We set w2 in Score(c) (see Background) to 0 as we focus on improving MCC
scores. Since model update procedures happen in parallel to CEF, training time is no longer
of importance. Concerning the hyper-parameter space, we chose the same setting as in [6].
To showcase, the benefit of RTCEF, we additionally perform experiments with the offline
CEF optimiser (see Background): i.e. for each FDi/MD𝑖 we perform CEF using the initial
model of each dataset. In what follows, the experiments that utilise our framework are
labelled as ‘fr’ while experiments that are performed only with offline trained models are
labelled as ‘no fr’.

RTCEF is implemented in Python 3.9.18, while the used Kafka version was 3.5.2. For BO,
we use the scikit-optimize library [16] 0.9.0. The experiments are conducted on a server

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

21

running Debian 12 with an AMD EPYC 7543 32-Core Processor and 400G of RAM. Our
framework is open-source and our experiments are fully reproducible.

Experimental results

Figure 4 shows the evolution of MCC over time for Rport along with the score improvements

for the cases ‘fr’ and ‘no fr’ for the maritime MD0/3/5 datasets. Results concerning MD0—the

dataset in its original order—show that the offline approach (‘no fr’) demonstrates poor
performance and significant fluctuations in 𝑀𝐶𝐶 scores over time. Our approach improves
scores and reduces fluctuations.

For MD0 RTCEF drammatically improves MCC up to ~ 300% following retraining and
optimisation procedures in weeks 5 and 6, respectively. A similar pattern is observed on the
MD5 dataset. On the MD3 case, results show that the initial model, generated by hyper-
parameter optimisation on weeks 12 to 15, underperforms. However, this behaviour is
immediately cured when the observer requests optimisation in the first running week (see
orange dot in week 16 of Figure 4 middle)—this is due to the score being less than min_score
(see Algorithm). We attribute the low scores of the initial model of the 𝑀𝐷3 dataset on the
lack of vessels passing through the monitoring area on that period (see Figure 5 right-a).
Figure 5 left-a, shows that the average 𝑀𝐶𝐶 for each dataset 𝑀𝐷𝑖 (𝑖  ∈  [0,5]) when using
RTCEF (`fr') is consistently higher than that achieved via a single model trained only on the
first four weeks of each dataset (‘no fr’). In Figure 5 left-b we report results concerning the
𝑅𝑓𝑖𝑠ℎ CE. For the 𝑅𝑓𝑖𝑠ℎ pattern there are no input data evolutions that affect CEF

performance, therefore in this case, the results show that when data evolutions that affect
model performance are not present, using RTCEF does not affect forecasting performance.

Concerning processing efficiency, interruptions in CEF are minimal as retraining or
optimisation procedures occur in parallel to CEF, thus efficiency remains unaffected.
However, when a new model request arises, new model versions arrive with some delay.
Recall, that until a new model is available, the engine consumes, in parallel, the input stream
with the already deployed model. Figure 5 right-b shows the mean percentage of time spent
every four weeks for production of models (we denote this value as 𝑀𝑃𝑃𝑇) involving the
Rport pattern. The results show that every four weeks, on average less than ~0.2% of time

is spent for model production (roughly 70 minutes). Consequently, RTCEF spends minimal
time every four weeks for model production, thus ensuring minimal delays and a resource-
friendly behaviour as optimisation or retraining procedures are not overperformed.

Figure 4: Experimental results for datasets MD{0/1/8} with Rport. 'rt' and 'opt' denote
'retrain' and 'optimisation'. Upper plots show MCC over time; lower plots show

improvement

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

22

Figure 5: Avg MCC (left-a, left-b) per FDi. Dataset and CER characteristics (right-a).
‘v’, ‘vw/m’ and ‘m’ stand for ‘vessels’, ‘vessels with matches’ and ‘matches’. MPPT

(right-b) per MDi for Rport

2.2 Complex Event Recognition with Symbolic Register
Transducers

Automata are of particular interest for the field of CER, because they provide a natural way
of handling sequences. As a result, the usual operators of regular expressions, like
concatenation, union and Kleene-star, have often been given an implicit temporal
interpretation in CER. For example, the concatenation of two events is said to occur
whenever the second event is read by an automaton after the first one, i.e., whenever the
timestamp of the second event is greater than the timestamp of the first. On the other hand,
atemporal constraints are not easy to define using classical automata, since they either work
without memory or, even if they do include a memory structure, e.g., as with push-down
automata, they can only work with a finite alphabet of input symbols. For this reason, the
CER community has proposed several extensions of classical automata. These extended
automata have the ability to store input events and later retrieve them in order to evaluate
whether a constraint is satisfied [17] [18] [19]. They resemble both register automata [20],
through their ability to store events, and symbolic automata [21], through the use of
predicates on their transitions. They differ from symbolic automata in that predicates apply
to multiple events, retrieved from the memory structure that holds previous events. They
differ from register automata in that predicates may be more complex than that of
(in)equality.

One issue with these CER-specific automata is that their properties have not been
systematically investigated, in contrast to models derived directly from the field of languages
and automata; see [22] for a discussion about the weaknesses of automaton models in CER.
Moreover, they sometimes need to impose restrictions on the use of regular expression
operators in a pattern, e.g., nesting of Kleene-star operators is not allowed. We propose a
system for CER, based on an automaton model which can address these issues. This model
is a combination of symbolic and register automata. We call such automata Symbolic
Register Transducers (SRT). SRT extend the expressive power of symbolic and register
automata, by allowing for more complex patterns to be defined and detected on a stream of
events. We also present a language with which we can define patterns for complex events
that can then be translated to SRT. We call such patterns Symbolic Regular Expressions
with Memory and Output (SREMO), as an extension of the work presented in [23], where
Regular Expressions with Memory (REM) are defined and investigated. \rem\ are extensions
of classical regular expressions with which some of the terminal symbols of an expression
can be stored and later be compared for (in)equality. SREMO allow for more complex

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

23

conditions to be used, besides those of (in)equality. They additionally allow each terminal
sub-expression to mark an element as belonging or not to the string/match that is to be
recognized, thus acting as transducers.

Our contributions may then be summarized as follows:

• We present a CER system based on a formal framework with denotational and
compositional semantics, where patterns may be written as Symbolic Regular
Expressions with Memory and Output (SREMO).

• We show how this framework subsumes, in terms of expressive power, previous
similar attempts. It allows for nesting operators and selection strategies. It also allows
n-ary expressions to be used as conditions in patterns, thus allowing the detection of
relational patterns.

• We extend previous work on automata and present a computational model for
patterns written in SREMO, Symbolic Register Transducers (SRT), whose
main feature is that it supports relations between multiple events in a pattern. SRT
also have the ability to mark exactly those simple events comprising a complex one.

• We show that SRT are closed under the most common operators, i.e., union,
intersection, concatenation and Kleene-star. Moreover, we show that, by using
windows, SRT are closed under complement and determinization. Windows are an
indispensable operator in CER because, among others, they limit the search space
for pattern matching.

• We implement a CER engine with SRT at its core and present relevant experimental
results. Our engine is both more efficient than other engines and supports a language
that is more expressive than that of other systems.

2.2.1 Symbolic Register Transducers

We start by presenting a language for CER and discuss its semantics. The main feature of
this language is that it allows for most of the common CER operators (such as selection,
sequence, disjunction and iteration), without imposing restrictions on how they may be used
and nested. Our proposed language can also accommodate n-ary conditions, i.e., we can
impose constraints on the patterns which relate multiple events of a stream, e.g., that the
number of tumour cells at the current timepoint is higher than their number at the previous
timepoint. We also discuss the semantics of patterns written in the proposed language and
show that these are well-defined. Hence, in order to know whether a given stream contains
complex events corresponding to a given pattern, we do not need to resort to a procedural
computational model. The semantics of the language may be studied independently of the
chosen computational model. This feature is critical, as it allows for a systematic
understanding of the use of operators. Additionally, it could be of importance for optimization,
which often relies on pattern re-writing, assuming that we can know when two patterns are
equivalent without actually having to run their computational models.

We extend the work presented in [23], where the notion of regular expressions with memory
(REM) was introduced. These regular expressions can store some terminal symbols, in order
to compare them later (in a string) against a new input element for (in)equality. The
corresponding automata compiled from REM need to be equipped with registers. Each
transition has the option to write the symbol that triggered it to some register. Transitions
can also access registers to retrieve their contents (previously stored elements) and

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

24

compare them with the last element read by the automaton's head. One important limitation
of REM with respect to CER is that they can handle only (in)equality relations. In this section,
we extend REM so as to endow them with the capacity to use relations from ``arbitrary''
structures. We call these extended REM Symbolic Regular Expressions with Memory and
Output (SREMO).

We assume that each terminal expression of a SREMO is a Boolean expression whose
predicates are in the form of a relation 𝑃. We also assume that all possible input events
constitute a universe 𝑈. We can then extend the terminology of classical regular expressions

to define characters, strings and languages. Elements of 𝑈 are called characters and finite
sequences of characters are called strings. A set of strings 𝐿 constructed from elements of

𝑈, i.e., 𝐿 ⊆ 𝑈∗ , is called a language over 𝑈. Then, a stream 𝑆 is an infinite sequence 𝑆 =
 𝑡1, 𝑡2, … where each 𝑡𝑖 ∈ 𝑈 is a character. By S1..k we denote the sub-string of 𝑆 composed
of the first 𝑘 elements of 𝑆. 𝑆𝑚..𝑘 denotes the slice of 𝑆 starting from the m-th and ending at

the k-th element. We can then define n-ary relations 𝑃 on the elements of 𝑈 and use these
relations, or combinations of them via Boolean connectives, as terminal expressions within
a regular expression. The arguments of 𝑃 refer either to the most recently read element of a
string or to preceding elements, assumed to have been stored in registers. We call such
terminal expressions “conditions”. Conditions are the basic building blocks of SREMO. In the
simplest case, they are applied to single events and act as filters. In the general case, we
need them to be applied to multiple events, some of which may be stored to registers.
Conditions will essentially be the n-ary guards on the transitions of SRT.

We can now define SREMO, by combining conditions via the standard regular operators.
Conditions act as terminal expressions, i.e., the base case upon which we construct more
complex expressions. Each condition may be accompanied by a register variable, indicating
that an event satisfying the condition must be written to that register. It may also be
accompanied by an output, either •, indicating that the event must be marked as being part
of the complex event, or ʘ, indicating that the event is irrelevant and should be excluded
from any detected complex events.

A SREMO is inductively defined as follows:

• If φ is a condition and 𝑜 an output, then 𝜑 ↑ 𝑜 is a SREMO.

• If φ is a condition, 𝑜 an output and 𝑟𝑖 a register variable, then 𝜑 ↑ 𝑜 ↓ 𝑟𝑖 is a SREMO.

• If 𝑒1 and 𝑒2 are SREMO, then 𝑒1 + 𝑒2 is also a SREMO.

• If 𝑒1 and 𝑒2 are SREMO, then 𝑒1; 𝑒2 is also a SREMO.

• If 𝑒 is a SREMO, then 𝑒∗ is also a SREMO.

In order to capture SREMO, we propose Symbolic Register Transducers (SRT), an
automaton model equipped with memory, logical conditions on its transitions and a single
output on every transition. The basic idea is the following. We add a set of registers 𝑅 to an
automaton in order to be able to store events from the stream that will be used later in n-ary
formulas. Each register can store at most one event. In order to evaluate whether to follow
a transition or not, each transition is equipped with a guard, in the form of a Boolean formula.
If the formula evaluates to TRUE, then the transition is followed. Since a formula might be
n-ary, with 𝑛 ≥ 1, the values passed to its arguments during evaluation may be either the
current event or the contents of some registers, i.e., some past events. In other words, the
transition is also equipped with a register selection. Before evaluation, the automaton reads
the contents of the required registers, passes them as arguments to the formula and the
formula is evaluated. Additionally, if, during a run of the automaton, a transition is followed,

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

25

then the transition has the option to write the event that triggered it to some of the
automaton's registers. These are called its write registers 𝑊, i.e., the registers whose
contents may be changed by the transition. Finally, each transition, when followed, produces
an output, either ʘ, denoting that the event is not part of the match for the pattern that the
SRT tries to capture, or •, denoting that the event is part of the match.

2.2.2 Experimental results

We have implemented a SRT-based CER engine by extending Wayeb5. We present our
implementation and experimental results. We present experimental results by comparing
Wayeb against other state-of-the-art CER systems. Our goal is to test the systems with
expressive, relational patterns, i.e., with patterns which can relate multiple events. For this
reason, we had to exclude systems that cannot express relational patterns, such as CORE
and previous versions of Wayeb. For some other systems, there is no publicly available
implementation or the implementation is no longer maintained (e.g., CRS and Cayuga). Yet
some other systems (e.g., TESLA) suffer from low performance for certain classes of queries
[24].

Our comparison thus includes SASE v1.0 [25], Esper v8.7.0 [26] and FlinkCEP v1.16.1 [27].
All these engines are written in Java. Wayeb is implemented in Scala 2.12.10. All
experiments were run on a 64-bit Linux machine with AMD EPYC 7543 × 126 processors
and 400 GB of memory. We used Java 1.8 for all systems. All experiments for all systems
were run as single-core applications.

As a basis for our experiments, we used the benchmark suite presented in [24]6. The suite
contains three datasets: a) stock market data from a single day (224,473 input events); b)
plug measurements from smart homes (1,000,000 input events) and c) taxi trips from the
city of New York (585,762 input events). For the stock market dataset, each input event is a
BUY or SELL event, containing the name of the company, the price of the stock, the volume
of the transaction and its timestamp. For the smart homes dataset, each input event is a
LOAD event, containing a load value in Watts, a household id, a plug id and a timestamp.
For the taxis dataset, each input event is a TRIP event, containing the datetime of the pickup
and dropoff, the zone of the pickup and dropoff, the trip distance and duration, the fare
amount, the tip amount, etc.

Since windows are ubiquitous in CER (for performance issues), we decided to focus on
windowed SREMO in our experiments. We also fixed the selection strategy to skip-till-any,
since this is the most demanding strategy, both in terms of time and space complexity. For
all experiments described here, we have made sure that all engines produce the same
results for each pattern.

The benchmark suite runs each experiment, i.e., each combination of engine, pattern and
window size, 3 times. We report the average throughput and memory footprint. Throughput
is measured in terms of (input) events processed per second, whereas memory is measured
in terms of used memory (MB). For each run, multiple memory measurements are taken,
one every 10.000 input events. Before the measurement, the garbage collector is explicitly
called. We report the average of those memory measurements. The time we use to calculate

5 https://github.com/ElAlev/Wayeb
6 https://github.com/CORE-cer/CORE-experiments

https://github.com/ElAlev/Wayeb
https://github.com/CORE-cer/CORE-experiments

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

26

throughput includes both the time required to process input events (update the state(s) of
the automaton, create new runs, discard old ones, etc.) and the time required to report any
complex events. However, we have slightly modified the notion of “reporting a complex
event”. Instead of writing it in a file/database (a system-dependent, expensive operation),
we perform (for all systems) a simple arithmetic operation on the timestamps of its
constituent simple events.

Our first set of experiments is focused on sequential patterns. We begin with patterns of the
following form:

𝑠𝑒𝑞3 ≔ ((𝜑1(~) ↑ ∙ ↓ 𝑟1); (𝜑2(~) ↑ ∙); (𝜑3(~, 𝑟1) ↑ ∙))[1..𝑤]

where w is the window size and 𝜑𝑖 all contain “local” constraints, i.e., conditions applied to

the single, most recently read event, while 𝜑3 relates the most recently read input event with
the event that triggered 𝜑1. For each such pattern, we run experiments for variable pattern

“length”. We say that the length of the Pattern 𝑠𝑒𝑞3 is 3 because it is composed of 3 terminal
sub-expressions. We can increase the length of the pattern by adding more such
expressions. In our experiments we have used patterns of length 3, 6, 9 and 12.

Figure 6 presents throughput results for the aforementioned sequential patterns and for all
datasets. Wayeb and Esper stand out clearly as the most efficient engines in terms of
throughput. Wayeb also has a significant advantage over Esper in most experiments and a
slight advantage for the smart homes dataset. For example, Wayeb is almost 2.5 times as
efficient as Esper for the taxis dataset. Wayeb has a slightly better performance than Esper,
its main competitor in terms of throughput. In general, we see that the performance is
relatively stable as a function of pattern length for all systems.

Figure 6 Throughput for sequential patterns with n-ary predicates as a function of
pattern length. Window sizes are wstock = 500, wsmart = 5, wtaxi = 100

In the next set of experiments, we investigated the behaviour of all systems for increasing
window sizes. For each dataset, we increased the window size up to the point where
throughput exhibits a significant drop. Figure 7 shows the relevant results. Wayeb again
exhibits the best performance in terms of throughput, followed by Esper. All systems exhibit
a throughput deterioration as the window size increases. This implies that the window size
is more factor in determining the number of created runs than pattern length.

×
×

×

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

27

Figure 7 Throughput for sequential patterns with n-ary predicates as a function of
window size. Pattern length is 3

In the last set of experiments, we used the stock market dataset and tested all engines
against patterns with various operators. We considered a diverse range of patterns, where
other operators like disjunction, iteration and their combination were employed. In particular,
we tested 5 patterns: 𝑞1) A sequential pattern starting and ending with a SELL event, and
with two BUY events in between; 𝑞2) same as 𝑞1, but with local thresholds on price; 𝑞3) same

as 𝑞1, but now includes disjunction; 𝑞4) same as 𝑞3, but with local thresholds on price; 𝑞5)
combining iteration and disjunction.

SASE can only support SREMO 𝑞1 and 𝑞2. Therefore, we do not show SASE results for
SREMO 𝑞3, 𝑞4 and 𝑞5. FlinkCEP supports all 5 patterns, but its semantics of the iteration
operator are ambiguous and its results when using iteration do not match those of the other
systems. Therefore, we do not show FlinkCEP results for SREMO 𝑞5.

The relevant results are shown in Figure 8. Wayeb has the highest throughput for all
patterns, followed by Esper. The performance for 𝑞2 is higher than that for 𝑞1, due to the

presence of extra threshold filters which prune several runs. On the other hand, 𝑞3 is the
most demanding one, because it does not have any threshold filters and it includes
disjunction, thus leading to more runs being created. 𝑞4 rebounds to higher throughput
figures, due to the inclusion of filters. For 𝑞5, Esper has its lowest performance and Wayeb
its second lowest, due to the presence of both iteration and disjunction.

Figure 8 Throughput for patterns with n-ary predicates and various operators.

w = 1000

× × ×

×

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

28

2.3 Complex Event Recognition with Allen Relations

Contemporary CER applications require the processing of large, high-velocity streams of
symbolic events derived from sensor data, in order to detect and report the satisfaction of
complex event patterns with minimal latency. In maritime situational awareness, e.g., a CER
system consumes streams of vessel position signals, in order to detect instances of
dangerous, suspicious and illegal vessel activities in real time, thus supporting safe shipping
[28]. The target activities of a CER system, such as illegal fishing, are typically durative, and
thus should be expressed using temporal intervals. Moreover, the use of Allen’s Interval
Algebra has proven quintessential for CER [29] [30]. Allen’s algebra specifies thirteen jointly
exhaustive and pairwise disjoint relations among intervals [31]. Consider, e.g., the detection
of the vessel activity ‘disappeared in area’, where a vessel may be attempting to conceal
illegal activities in a certain area, such as fishing in fisheries restricted areas, by stopping
transmitting its position. This phenomenon can be expressed with the ‘meets’ relation of
Allen’s algebra, while it cannot be captured by common interval operators, such as union
and intersection.

The Event Calculus is a logic programming formalism for representing and reasoning about
events and their effects over time [32]. The Event Calculus exhibits a formal, declarative
semantics, while supporting non-monotonic reasoning with background knowledge,
relational events and hierarchical event patterns. These types of temporal specifications are
commonly required in CER [10]. The “Run-Time Event Calculus” (RTEC) is a formal, logic-
based computational framework for online CER [33]. RTEC includes optimisation
techniques, like windowing, allowing for highly efficient reasoning in CER applications. We
proposed RTECA, an extension of RTEC that supports the relations of Allen’s interval algebra
in complex event patterns.

In order to express complex event patterns with Allen relations, RTECA supports logic
programming rules with head ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝐹 = 𝑉, 𝐼), expressing that a fluent 𝐹 has value 𝑉 in
the maximal intervals of list 𝐼. We use a fluent-value pair (FVP), such as 𝐹 = 𝑉, to denote a

complex event. In order to incorporate Allen relations, the rules with head ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝐹 = 𝑉, 𝐼)
may contain body predicates in the form of 𝑎𝑙𝑙𝑒𝑛(𝑟𝑒𝑙, 𝑆, 𝑇, 𝑜𝑢𝑡𝑀𝑜𝑑𝑒, 𝐼), where 𝑟𝑒𝑙 denotes an

Allen relation, 𝑆 and 𝑇 are input lists of maximal intervals, 𝑜𝑢𝑡𝑀𝑜𝑑𝑒 expresses how we should
treat the interval pairs (𝑖𝑠, 𝑖𝑡) satisfying 𝑟𝑒𝑙, where 𝑖𝑠 ∈ 𝑆 and 𝑖𝑡 ∈ 𝑇, and 𝐼 is the output list of
maximal intervals. Consider the following example rule:

ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑𝐼𝑛𝐴𝑟𝑒𝑎(𝑉𝑙, 𝐴𝑇) = 𝑡𝑟𝑢𝑒, 𝐼𝑑𝑖𝑎) ←

 ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝑤𝑖𝑡ℎ𝑖𝑛𝐴𝑟𝑒𝑎(𝑉𝑙, 𝐴𝑇) = 𝑡𝑟𝑢𝑒, 𝑆),

 ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝑔𝑎𝑝(𝑉𝑙) = 𝑓𝑎𝑟𝐹𝑟𝑜𝑚𝑃𝑜𝑟𝑡𝑠, 𝑇),

 𝑎𝑙𝑙𝑒𝑛(𝑚𝑒𝑒𝑡𝑠, 𝑆, 𝑇, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝐼𝑑𝑖𝑎).

𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑𝐼𝑛𝐴𝑟𝑒𝑎(𝑉𝑙, 𝐴𝑇) = 𝑡𝑟𝑢𝑒 is an FVP expressing the intervals 𝐼𝑑𝑖𝑎 during which

vessel 𝑉𝑙 stopped transmitting its position while in an area of type 𝐴𝑇. The first two conditions
of the above rule express that 𝑉𝑙 is within an area of type 𝐴𝑇 in the intervals of list 𝑆 and that
𝑉𝑙 has stopped transmitting its position while being in the open sea in the intervals of list 𝑇.
The last condition of the rule expresses the meets Allen relation.
𝑎𝑙𝑙𝑒𝑛(𝑚𝑒𝑒𝑡𝑠, 𝑆, 𝑇, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝐼𝑑𝑖𝑎) states that from the interval pairs (𝑖𝑠 , 𝑖𝑡) satisfying meets,

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

29

where 𝑖𝑠 ∈ 𝑆 and 𝑖𝑡 ∈ 𝑇 , we will keep in the output list 𝐼𝑑𝑖𝑎 the “target” intervals, i.e., the

intervals of the second input list 𝑇. Therefore, a vessel 𝑉𝑙 is said to disappear in an area of
type 𝐴𝑇 during an interval 𝑖𝑑𝑖𝑎 , if 𝑖𝑑𝑖𝑎 is an interval during which 𝑔𝑎𝑝(𝑉𝑙) = 𝑓𝑎𝑟𝐹𝑟𝑜𝑚𝑃𝑜𝑟𝑡𝑠,

i.e., 𝑉𝑙 stopped transmitting its position while being in the open sea, and 𝑖𝑑𝑖𝑎 is met by an
interval during which 𝑉𝑙 was within an area of type 𝐴𝑇.

We describe RTECA in [34], where we outline the syntax, semantics and reasoning
algorithms of RTECA, demonstrating their correctness and linear-time complexity. Moreover,
we present an extensive, reproducible empirical comparison of our approach with two state-
of-the-art systems supporting Allen relations on real maritime data. Our comparison
demonstrates that RTECA is at least one order of magnitude more efficient than the state of
the art.

2.4 Components for Critical Maritime Event Forecasting and
Resolution

Two distinct components for forecasting and resolving critical complex maritime events are
being developed by Kpler for the Maritime Use Case:

1. MAR_1: Collision forecasting and rerouting
2. MAR_2: Hazardous weather routing

2.4.1 MAR_1: Collision forecasting and rerouting

In 2020 alone 2632 accidents occurred in European Waters according to European Maritime
Safety Agency. In CREXDATA, Kpler aims to increase maritime safety by developing
components and tools for the early forecasting of critical maritime events and for the
automation of the decision-making process for resolving critical situations at sea. Kpler has
already developed an approach for vessel collision forecasting that is integrated with the
distributed system architecture based on the Akka processing engine [35]. In CREXDATA,
in the context of the Maritime Use Case, Kpler develops a solution for vessel collision
avoidance for manned and unmanned vessels.

The vessel collision avoidance solution is based on the Frenet Frame Optimal Trajectory
Generation algorithm. The algorithm is advantageous for solving dynamic routing problems
in motion planning in complex environments, for robotics, autonomous vehicles and maritime
navigation.

The Frenét Frame Optimal Trajectory Generation algorithm addresses the dynamic routing
problem by offering an optimal control-based solution for motion planning. It features a
reactive collision avoidance algorithm suited for complex dynamic environments and
manages long-term objectives such as velocity keeping, route keeping, and stopping, while
considering vessel-specific parameters [36]. Additionally, the COLREGs (International
Regulations for Preventing Collisions at Sea) are integrated with the collision avoidance
algorithm, so that the algorithm produces COLREG-compliant path planning solutions.
Specifically, the integration of COLREG involves modeling and incorporating vessel safety
zones, detecting vessel-to-vessel interaction cases, and filtering out non-COLREG
compliant trajectories during the trajectory generation process (Figure 9).

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

30

Figure 9: Left: COLREG regions for vessel-to-vessel interaction classification [37].
Right: Optimal path planning and velocity adaption of a vessel with green being the

final COLREG compliant optimal trajectory generated in each subsequent
replanning step, black the COLREG compliant valid trajectories, and gray the invalid

alternatives in each replanning step t. Image adapted from [36]

Figure 10 presents the workflow of the vessel collision avoidance algorithm. Figure 11
presents an example output of the collision avoidance algorithm given two vessels that are
forecasted to collide head on at the detected collision position. First, the collision detection
data [35] is ingested from the Redis database, the CREXDATA platform (simulated collision
events for the simulator tools and the interactive simulation scenarios) and the autonomous
vessel (sea trial). The input includes the information on the collision detection event and
vessel specific dynamic and static information.

Subsequently, the type of COLREG interaction is identified according to the interacting
vessel speeds and courses. Finally, the compliant trajectories are identified by the frenet
path planning algorithm.

Figure 10: Vessel collision avoidance workflow

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

31

Figure 11: Example of a head on collision and the generated COLREG compliant
collision avoidance path

2.4.2 MAR_2: Hazardous weather routing

Collective vessel fleet intelligence involves using historical weather data and weather
forecasts with historical mobility information to address routing challenges in critical sea
weather events. In the context of the Maritime Use Case, Kpler develops a hazardous
weather routing solution for manned and unmanned vessels. The hazardous weather routing
solution for vessels sailing around the world holds immense significance, particularly in the
context of international vessel traffic, safety, and the minimization of route disruptions that
impact the global supply chain. Extreme weather events, which are becoming increasingly
frequent and severe due to climate change, pose significant risks to maritime operations.
Maritime traffic routes are vital for the trade of oil, liquefied natural gas (LNG), and other
essential commodities. For example, ports along the Gulf of Mexico and the US East Coast,
such as Corpus Christi, Houston, and Beaumont, are crucial hubs for the export of these
resources to European markets. Disruptions along these routes due to hazardous weather
conditions can have far-reaching consequences (see: Figure 12 and Figure 13).

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

32

Figure 12: Visualization of the 2022 hurricane events (their paths) along the North
Atlantic Ocean

Figure 13: a) Disruption of maritime traffic caused by Storm Ciarán that severely
affected parts of Europe and the North Atlantic from late October to early November

2023. b) Comparison with the 6.11.2023, after the storm has calmed under normal
weather conditions. Heatmap visualizes the wave height – direction. Different vessel

types sailing in the area are visualized as triangles with colours indicating the
different vessel type

The weather routing approach entails modeling the sea space between origin-destination
locations using the H3 hexagonal geospatial index (h3geo.org) [38]. The H3 index resolves
the sea area into a grid. Each H3 cell (hex size: 5) of the index forms a node and is
interconnected with edges to each neighboring cell. This forms a high-resolution graph with
nodes and edges with uniform index size that fully covers the entire globe, and which can
be used as the solution space for the hazardous weather routing algorithm.

file:///C:/Users/adeli/Dropbox/Deliverable%20D8.1/CREXDATA/h3geo.org

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

33

Subsequently an ETL process has been built in Airflow for the weather data and forecast
extraction, fusion with the H3 grid and scaling transformation. The ETL process extracts
weather data from NOAA (wind data) and from Copernicus (wave and currents data),
standardizes it into a uniform format and fuses it with the H3 grid.

The resolution of the weather features is lower than the resolution of the H3 grid. Thus, it is
important to map the respective weather features accurately across the entire H3 grid fill the
missing areas accordingly. The mapping of the weather features on the H3 index is facilitated
with following steps and is visualized in Figure 14:

1. Weather features are mapped directly into their corresponding H3 cells. (purple cells:
1st level)

2. 2nd level neighbouring (green) cells are assigned with the value from the 1st level cells
3. 3rd level red cells are assigned the average of the respective H3 2nd level neighbours
4. 4th level yellow cells are assigned with the neighbouring average values.

Figure 14: Mapping of weather features on the H3 index (example for NOAA wind
dataset)

It is important to note that the three weather datasets for wind, waves and currents have
different recording intervals. NOAA provides wind data every six hours with hourly datasets,
Copernicus supplies wave data twice a day (dividing the day in half) with three-hourly
datasets and offers currents data once a day with hourly datasets. The data extraction is
scheduled to run daily, executing various batch jobs that automate and periodically perform
the specified tasks and updates to the current weather databases used for hazardous
weather routing (see Figure 15).

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

34

Figure 15: Download and fusion process of weather data from NOAA and
Copernicus (Task groups)

Additionally, a statistical data extraction of historical weather data is performed on data from
September 2022. Statistics for wind and currents are generated by calculating the
magnitudes for the wind and currents, according to the respective official scales for
categorizing the intensity of weather features. Subsequently, the weather data is scaled
across the entire area by utilizing the minimum and maximum values from the statistical
extraction (see Figure 16).

Figure 16: Statistics extraction and weather forecasts scale categorization process
step for each weather parameter. Example showcases the task groups for days 0

(current) to 3 (Total task groups reach up to day 9)

The solution leverages historical AIS data fused with the historical weather data and weather
forecasts. Based on the statistical weather analysis and scaling, weights along the edges
across the different H3 nodes are generated. These weights are treated as functions of the
forecasted changing weather conditions, leading to the generation of updated and safe
vessel routes toward the destination. The final implemented routing solution is graph-based
and employs the A* algorithm for the route definition. The implemented approach for the
hazardous weather routing solution is presented in Figure 17.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

35

Figure 17: Hazardous weather routing methodological workflow

Initial evaluation results for the hazardous weather routing component are presented in
Chapter 5 Maritime Use Case in Deliverable 2.2.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

36

3 Interactive Learning for Simulation Exploration

In this section we present our work in the scope of “T4.2 Interactive learning for simulations
exploration”. The main objectives of T4.2 are:

• Develop algorithms for guiding large-scale simulations towards desired ends.

• Simulate course corrections and adaptations to a changing environment.

• Avoid exhaustive search of the solution space by incorporating faster and effective
solutions.

• Promote interactive learning to allow users to be more active in guiding the
simulations.

In the first half of the project, we focused on defining the interactive learning and simulations
exploration scenarios for each use-case of CREXDATA. Having the simulators in place (see
D2.2), we examined what would be relevant and useful for the end-users, given the
interactive learning possibilities that each simulator and use-case definition provides.

In the following, for each use-case, we briefly describe the simulators used and focus on the
T4.2’s perspective regarding the parameters that are calibrated and explored. Also, we
define several scenarios and outline the methods that are going to be used for simulations
exploration, as well as for aiding the end-users in an interactive learning manner.

3.1 Emergency Use-Case

In the first half of the CREXDATA project, a focus was set in the weather induced Emergency
Case (EmCase) to “weather related simulation” (cf. [D2.1, p.28]). MIKE+ was selected as a
simulator engine (see details in D2.2). The software is available with a research license,
offering an API to invoke simulation runs and access output results. It is a representative
sample of similar simulators, also preparing for different natural phenomena like forest fires.
Specific use cases cover the three use case types of prediction, calibration and optimization.

The conceptual software architecture (see Figure 18) for the integration of MIKE+ covers
the KAFKA-based interface between the CREXDATA system including the T4.2 component,
ARGOS as a kind of mediator system invoking simulations and pushing simulation results,
as well as a sample deployment of MIKE+ extended by a batch process. This batch process
starts a simulation run, uniquely identified by a simID, converts output results from DFS
formats to T4.2 format, and merges all relevant result packages. The software packages
MIKE+ Py and MIKE IO are used for this purpose.

MIKE+7 manages projects through so called project (MUPP) Files, loading context data and
parameter values from an SQLite database. From that database, further data sets like Digital
Elevation Models (DEMs) are acquired (in that case, using SpatiaLite). Simulations are run

7 URL https://manuals.mikepoweredbydhi.help//latest/Cities/MIKE_Plus_Model_Manager.pdf for
general and esp. network modelling including results specifications, URL
https://manuals.mikepoweredbydhi.help//latest/Cities/MIKE_Plus_2DOverland.pdf for 2D overland
modelling including results specification, last access 20.05.2024

https://github.com/DHI/mikepluspy
https://github.com/DHI/mikeio
https://manuals.mikepoweredbydhi.help/latest/Cities/MIKE_Plus_Model_Manager.pdf
https://manuals.mikepoweredbydhi.help/latest/Cities/MIKE_Plus_2DOverland.pdf

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

37

based on data for three types of parameters: context data (see Figure 19), configuration
settings and input data.

Figure 18: Adoption of the simulator architecture [D2.1]

3.1.1 Input parameters and data

Simulations are conducted based on context data which mainly subsume

• 2D overland (grid/raster data):

o Geographical information setting references to world coordinates (e.g., by

lat-lon coordinates of the south-western edge).

o Bathymetry resp. Digital Terrain Model (DTM) which indicates the surface

level (in case of rivers, lakes and oceans below water).

o Digital Surface Model (DSM) indicating the surface that includes buildings

etc.

• Catchments and/or zones, breaking down the grid into areas with similar properties:

o Buildings

o Streets

o Lawns etc. (e.g., by layer of land cover)

• Collection network system (sewage system)

o nodes (manholes, outlets and basins): defined by coordinates, type,

diameter, ground and bottom level etc.; specified by, e.g., max. and min.

infiltration rates

o circular pipes, defined by references to two nodes, type, height, width,

diameter, length etc.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

38

Parameters in configuration settings are assumed to be stable in general for simplification
purposes. The latter means that, in CREXDATA use cases, they will not be changed in
between simulation runs by decision. Exemplary configuration parameters are:

• General parameters:

o Temporal resolution for the simulation of output parameters like water level,

flow velocity etc.

o Spatial resolution of the grid (e.g., grid elements in 5 meters distance)

o Catchments

• Parameters stable by decision, esp. properties of catchments and/or zones

determining, e.g., the rainfall-runoff model, which is based on temperatures and

drought conditions of the ground (determined by meteorology, i.e., potentially

calculated by impact assessments based on meteorological data)

o Dampening delta depth

o Weir coefficient

o Initial values for the hydrodynamic variables on dryness resp. water level

o Surface roughness, eddy viscosity etc.

Main input data for simulations might result from sensing, especially acquired by satellites
(grid/raster data) and weather stations (time series data), and from forecasting (typically
grid/raster data), gathered from forecasting services running models of single- or multi-
phenomena models. Such input data refers to

• Meteorological input data parameters – precipitation (type: rainfall and raingauge):

main influence for flooding events, determined by intensity over time

• Meteorological input data parameters – wind: direction and intensity

Figure 19: Visualisation of an excerpt from the context data used for simulations

conte t data

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

39

3.1.2 Output parameters

The simulation results in output data, carrying time series for specific attributes for the grid
and for networks8:

• Network: nodes and pipes

o focused in CREXDATA: total water depth (water level)

o further parameters like discharge to surface and (optional) volume

• Network: links

o further parameters like flow velocity

• Network: nodes

o further parameters like external water level and diverted runoff to surface

• Elements (cells) of the 2D overland grid/raster (incl. catchments)

o focused in CREXDATA: water level

o further parameters like volume balance and discharge (through cross-

section), U/V velocity and current speed

Figure 20: Output data from a sample simulation run (executed for a duration of 4
hours, in equal time steps of 60 seconds each) for total water depth in nodes (N11,
N3, …) and links (L10, L2, …) in time steps 00:3:54:00 to 04:00:00 from res1d file and

water level for grid elements in time steps 00:00:00 to 00:07:00 from dfsu/dfs2 file

Relevant data for interactive learning scenarios (T4.2) and, potentially resulting from that,
simulation for visualization in Augmented Reality (T5.4) subsumes both parameters in
configuration settings and input data parameters. In general, both weather data from sensors
as well as weather forecasts is available through ARGOS, acting as a kind of proxy to
services like Copernicus, ECMWF, Meteostat etc.

3.1.3 Use cases in the EmCase

Real data is available for the city of Innsbruck, made available through an agreement
between the CREXDATA consortium (DCNA, UPB, NCSR und TUC) and Innsbrucker
Kanalbetriebe (IKB). IKB provided the entire context data including the sewer system and
catchments as well as precipitation and measurement data for an extreme weather even in

8 There are further options, for instance, for nodes and links (like water quality) or junctions and tanks
(pressure, head and water demand) which are not reflected here.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

40

2016 (for details see D2.2). The city of Innsbruck does not run a simulation model like MIKE+,
so that high efforts would be required to create the initial model.

To avoid these efforts in the first stage, sample conditions are assumed for the initial phase
of CREXDATA9. Offline calibration would be required, in actual use, for parameters in
configuration settings that are determined as “stable by decision” above.

Initial Interactive Learning scenarios are presented in Table 2, encapsulated in use cases
for T4.2. Each of these use cases refers to a specific type of Parameter Exploration
(interventions). Relevant output describes attributes that are help in action planning and
decision making, indicating most promising measures resp. most critical situations. For these
attributes, historic data might be relevant (cf. Figure 18) as reference data (esp. for end
users interacting with a T4.2 service) or training/test data (for machine learning models). We
note that from the list of the possible scenarios, in the next half of the project we will focus
on particular ones based on various criteria, such as the required preparatory effort,
opportunities for further integration in other tasks, etc.

Table 2: Overview of possible interactive learning scenarios for the EmCase.

No. Interactive Learning
scenarios (use cases)

Parameter Exploration
(interventions): modify
configuration or input
parameters

Relevant output

1 Having an unexpected
actual total water depth in a
node or in a link, or a water
level in a grid element, does
that indicate that the sewer
network does not work as
expected?

Delete node (covered
manhole), link (blocked
pipe) or disable discharge
through cross-section
(between grid elements/
catchments)

Actual water level
measurements (→ find
blockage)

2 Where should barriers be
set to reduce critical water
levels within the grid or
water depth within network
elements?

Elevate grid elements in the
DSM to indicate barriers
(e.g., by loading pre-
defined alternative grids,
each with a prepared
response measure)

Find minimal average water
level or total water volume
in the entire grid

3 Expecting an extreme
weather event, which of the
prepared risk scenarios is
valid and, as a
consequence, which
management plan shall be
activated by a decision?

Vary precipitation over time
 options: default
scenarios, historic
scenarios from ARGOS,
alternative forecasts from
ARGOS

Indicate expected
probability level (e.g., 100y
flooding)

9 Initially given by a sample project provided by DHI for MIKE+.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

41

4 Is it necessary to consider
wind situations when
assessing impacts?

Vary wind speed and
direction  ARGOS

Indicate most problematic
wind conditions

5 Does the forecast match
the actual conditions in
terms of water discharging
to the ground or
evaporating to the air?

Specify possible discharge/
evaporation (?) relative to
temperature/ drought 
ARGOS

Confirm simulations with
regard to actual/measured
drought

6.1 Rescuer team needs to
move from starting point to
a point in the emergency
scene and must decide on
a safe entry route

Vary precipitation over time
(cf. use case 3)

Routes10 that are not (or
least likely) flooded in any
simulation scenario

6.2 Rescuer team needs to
move from a point in the
emergency scene to a safe
place and must decide on a
safe rescue route11

Vary precipitation over time
(cf. use case 3)

Routes that are not (or least
likely) flooded in any
simulation scenario

3.2 Health Crisis Use-Case

The second CREXDATA use-case is divided into two sub-use-cases, one focusing on
multiscale simulations for the condition of the lungs of COVID19 patients, and the second
regards an epidemiological scenario that takes into account mobility data and historical
measurements relevant to the COVID19 pandemic.

3.2.1 Multiscale Simulations

This use case is based on Alya and PhysiBoSS to simulate COVID-19 dynamics in the lungs
and airflow in the upper airways (see details in D2.1). It aims to understand varying COVID-
19 severity and optimize interventions and treatments using CREXDATA technologies. The
process involves creating a 3D model of the upper airways, simulating infection dynamics,
and integrating omics data into the model. The integration and analysis phase is crucial in
this project. The simulations from Alya and PhysiBoSS will be combined to analyse the
progression of COVID-19, providing insights into disease spread and progression in the
lungs. These insights could inform new treatment strategies or preventive measures.
Complex Event Forecasting is being used to predict complex events based on historical
data, enhancing our understanding of disease progression. Furthermore, Interactive
Learning for Simulation Exploration will allow users to interactively explore and learn from
simulations, fostering a deeper understanding of the disease dynamics and potentially
leading to breakthroughs in treatment approaches. The overview of our approach is shown
in Figure 21. This phase embodies the synergy of simulation and AI in combating COVID-
19.

10 requires routing service, as well as mapping of route and “road” elements in the project
11 similar to suggesting a safe exit route to citizens, e.g., during an emergency call

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

42

Figure 21: (Left) A schematic of the interconnection between PhysiBoSS and Alya,
the simulators, with the different components from the WP4 that will help with the
calibration, the exploration and the interventions. (Right) Time-series example and

illustration of the alternative interventions

The simulators that will be used in this task are PhysiBoSS and Alya. PhysiBoSS is a multi-
scale agent-based modelling framework that integrates physical dimension and cell
signalling [39, 40]. It provides a flexible and computationally efficient framework to explore
the effect of environmental and genetic alterations of individual cells at the population level.
PhysiBoSS is designed to bridge the critical gap from single-cell genotype to single-cell
phenotype and emergent multicellular behaviour. It’s particularly useful when studying
heterogeneous population response to treatment, mutation effects, different modes of
invasion or isomorphic morphogenesis events.

On the other hand, Alya is a high-performance computational mechanics code designed to
solve complex coupled multi-physics/multi-scale/multi-domain problems, which are mostly
coming from the engineering realm [40]. It solves a variety of physics including
incompressible/compressible flows, non-linear solid mechanics, chemistry, particle
transport, heat transfer, turbulence modelling, electrical propagation, and more. Alya was
specially designed for massively parallel supercomputers, and the parallelization embraces
four levels of the computer hierarchy. It’s used in a variety of engineering simulations and is
part of the Unified European Applications Benchmark Suite.

In this project, we will perform grid search for the estimation of simulator parameter values,
coupled with ETSC algorithms for the timely recognition of non-relevant ones. The non-
relevant simulation instances will then be prematurely terminated before their completion
and thus save computational time and resources and speed-up the whole calibration
process. These parameters include the initial concentration of oxygen, the number of virions
arriving at the alveoli, and the state of the alveoli (represented by the percentage of healthy
cells in the simulation). The calibration of these parameters is crucial as it influences the
accuracy of the simulations and the subsequent analysis. By fine-tuning these parameters,
we aim to create a more precise and representative model of COVID-19 progression, which
in turn can lead to more effective treatment strategies.

Likewise, Interactive Learning interventions will be crucial in optimizing three key aspects of
COVID-19 treatment. Firstly, we aim to determine the optimal timing for the delivery of
mechanical oxygen support. This is critical in ensuring patients receive necessary support

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

43

at the most beneficial time. Secondly, we will identify the ideal time for drug delivery, which
could significantly impact the effectiveness of the treatment. Lastly, we will ascertain the
optimal drug concentration, balancing efficacy and potential side effects. These interventions
aim to personalize and enhance COVID-19 treatment, potentially improving patient
outcomes by leveraging different AI tools developed in CREXDATA. For instance, we will
continue our work in analysing simulation results using online data and different optimization
methods, such as Genetic Algorithms, and Covariance Matrix Adaptation [41] [42].

3.2.2 Epidemiological Scenario

For the Epidemiological Scenario, we will use the MMCACovid19 to simulate the
spatiotemporal patterns of COVID-19 progression during the pandemic in Spain. The
Epidemiological Scenario is divided into two problems that aim to be solved by integrating
different CREXDATA technologies. The first problem is the calibration of epidemiological
and population parameters to define a reference model for simulating the spread of COVID-
19 in Spain. In the second problem, we will use the calibrated model to evaluate different
interventions to reduce the epidemic’s impact, including i) designing confinement strategies,
ranging from national-level lockdowns to region-specific restrictions, and ii) assessing the
effectiveness of various vaccination strategies.

The MMCACovid19-vac is a software package for simulating the spread of infectious
diseases in a metapopulation, considering different types of agents (e.g., various age
groups), their interactions, and daily mobility patterns. The simulator relies on the
Microscopic Markov Chain Approach, with more details available in D2.2. The simulator will
be integrated into a model exploration workflow designed to characterize large parameter
spaces. Figure 22 illustrates the different components of the workflow, including the
simulator, the model exploration component, the algorithms used for parameter exploration,
and the interactions between these components. Additionally, the workflow establishes a
common architecture that will be used to address various scenarios. More details about the
model exploration workflow can be found in D2.2.

Figure 22: Model exploration workflow for the epidemiological scenario

As mentioned, this use case includes two scenarios: i) the calibration of epidemiological
parameters; and ii) the design of effective interventions to control the disease spread. The
calibration of parameters consists of finding parameters that when plugged into the model
the simulation reproduced the observed pattern in the number of new COVID-19 cases,
hospitalizations and fatalities for different age groups and different regions.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

44

We first focused on a subset of epidemiological parameters described in Table 3 which
includes a brief description and the type of data. In this stage of the project, we have focused
on calibrating a subset of epidemiological parameters rows (highlighted in grey). The
calibration process values incorporate real-world data which is used to guide the parameter
search. For this, we have collected a comprehensive dataset that includes COVID-19 reports
that include new cases, fatalities and hospitalizations reported daily and weekly at different
levels of spatial resolution (e.g. country-level, provinces, municipalities) together with phone-
based anonymized daily mobility data.

Table 3: Epidemiological parameters of the MMCACovid19-vac infectious model

Parameters Description Data Type

βᴵ Infectivity of symptomatic (S → E) scalar (float)

βᴬ Infectivity of asymptomatic (S→ E) scalar (float)

ηᵍ Exposed (E) rate for each age group vector float (1xg)

αᵍ Asymptomatic (A) infectious rate for each age group vector float (1xg)

μᵍ Infectious (I) rate for each age group vector float (1xg)

θᵍ Direct death probability (I → PD) vector float (1xg)

γᵍ ICU probability (I → PH) vector float (1xg)

ζᵍ Pre-deceased (PD) rate vector float (1xg)

λᵍ Pre-hospitalized (PH) in ICU rate vector float (1xg)

ωᵍ Fatality probability in ICU (PH → HD) vector float (1xg)

ψᵍ Death (HD) rate in ICU for each age group vector float (1xg)

χᵍ ICU (HR) discharge rate for each age group vector float (1xg)

To guide the calibration of parameters, we are currently using various optimization and
machine learning techniques, including Genetic Algorithms (GA) and Covariance Matrix
Adaptation (CMA). Additionally, we are employing approaches such as active and interactive
learning combined with visual analytics to improve the characterization of the parameter
space.

Specifically, we are developing a workflow that identifies candidate parameters, and the
simulations produced by these parameters are analysed using visual analytic techniques.
This allows expert users to identify the most relevant parameter sets and discard those that
initially seemed promising but, upon deeper analysis, reveal inconsistencies when compared
against real-world data. We are also evaluating the use of Federated Learning to perform
Approximate Bayesian Computation in a federated manner, aiming to learn the posterior
distribution of parameters in context when different users are interested in learning
parameters but the data used to guide the parameter exploration is sensitive and thus,
cannot be exchanged for privacy concert.

The second scenario will use the workflow to find effective interventions to control the spread
of the disease in different situations. Specifically, we will focus on two types of interventions:

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

45

i) control measures for mobility reduction, social distancing, and household permeability, and
ii) the introduction of vaccination campaigns using different technologies developed in the
context of the CREXDATA project. Table 4 shows the parameters used to describe these
interventions.

The group of rows at the top of Table 4 describes the parameters used to model mobility
reductions and social distancing policies. These parameters include the periods during which
the policy is applied, scalar values to model social distance reductions for each age group,
the permeabilities of confined households, and a time series with values for the percentage
of mobility reduction. The group of rows at the bottom of Table 4 describes the parameters
used to model the introduction of vaccines, including the start date of vaccination, the
duration of the campaign, the number of vaccines provided per day, and the fraction of
vaccines supplied to each age group.

Table 4: Parameters to model the intervention to control the epidemic

Parameters Description Data Type

tᶜs
Timesteps when the containment measures will be
applied vector (integer)

κ₀s
Array of level of confinement. (Decreases population
mobility. Decreases average number of contacts.
Increases household isolation) Time-varying

ϕs
Array of permeabilities of confined households. (Mixing
among households. Decreases household isolation) vector float (1xg)

δs
Array of social distancing measures. (Reduces contacts of
the non-confined population) vector float (1xg)

% of vaccines per day % of vaccines that are supplied at each step scalar (float)

Start vaccination The simulation step in which vaccines are supplied scalar (integer)

Duration
Number of simulation steps in which vaccines are
supplied scalar (integer)

ϵᵍ Fraction of vaccinations per age group vector float (1xg)

In this scenario, we are interested in finding interventions that minimize the number of
fatalities, ICUs as well as the peak in cases. We can also model the economic cost of
lockdown and use this as an additional cost. In addition, for the mobility reduction
intervention, we are planning to introduce penalties that account in the detrimental impact
that mobility reduction can has on the economic activities. Moreover, we are also considering
the use of multi-objective optimization and Pareto optimality to optimize different criteria such
as the trade-off between the effectiveness of lockdowns and its detrimental impact in
economic activity.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

46

For finding effective strategies we will implement a workflow that combines optimization
techniques, interactive learning and visual analytics in a similar way as it is done for the
parameter calibration. Reinforcement Learning (RL) will also be considered as a solution.

3.3 Maritime Use-Case

The Maritime Use Case aims to develop solutions that enable early detection and forecasting
of maritime events for safe maritime operations and efficient action planning and decision
making. Based on the requirements elicitation for maritime complex critical events (D2.1),
two components are developed focusing on the mitigation of vessel collision events and the
avoidance of hazardous weather conditions at sea:

1. Collision Forecasting and Rerouting
2. Hazardous Weather Rerouting

The simulator of the Maritime Use Case will allow end-user operators, to simulate vessel
positions and events to explore and optimize vessel navigation under the collision avoidance
and hazardous weather routing focus cases, by ingesting simulated (artificial) vessel
positional data and by allowing end-users to assess different alternatives through the
calibration critical operational parameters. The simulated events will be presented to the end
users via GUI for further evaluation and testing.

In the context of T4.2, firstly, the operational parameters for the calibration of the algorithms
that were developed for both software components of the Maritime Use Case have been
identified. In a second step, critical operational parameters have been selected for each
focus case based on their significance in resolving the respective critical event. Based on
these parameters, the specifications of the interactive learning scenarios were derived, as
described in Table 5. To this end, we will apply the Active Learning and Optimization
workflows, as they are described in the next section (Sec. 3.4).

Table 5: Interactive simulation scenario specifications for the Maritime Use Case
components

Focus Case
Interactive
Learning
Scenario

Description

Collision
Forecasting and
Rerouting

Speed
adjustment

Resolve the forecasted collision detection event
between two vessels with a different target speed
other than the current vessel speed. In this way
different trajectories for the collision avoidance
may be generated and different strategies can be
assessed by the end user operator and consider
factors that are out of scope for the collision
avoidance algorithm. These factors may include
operational factors that are decisive for the
vessel speed, speed limitations that are not
captured by the AIS and/or any other vessel
sensors, space limitations, the avoidance of

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

47

specific nearby sea areas while performing a
collision avoidance manoeuvre etc.

Hazardous
Weather Routing

Departure time

Evaluate different strategies based on the
departure time and the changing weather
conditions along the route. Under certain
circumstances that include very adverse weather
conditions, the route towards a destination might
be blocked for several days or the alternative
route might not be optimal due to the significantly
increased ETA. Waiting out for weather
conditions to improve is a common routing
strategy of vessels to optimize maritime
operations, fuel consumption and operational
efficiency

Hazardous
Weather Routing

Route planning
with and
without
weather
routing

Evaluate the effect on ETA when considering
weather conditions in route planning. In this
context, vessel crews and fleet managers will be
able to quantify the effects of the hazardous
weather routing component on the vessel ETA to
a specific destination. This aims to improve
understandability and support the respective
decision makers to take informed decisions for
optimal maritime operations.

Until M18, the collision forecasting and rerouting interactive speed adjustment interactive
simulation functions has been implemented on the frontend. The external user is able to
review collision forecasts and simulate different COLREG compliant collision avoidance
paths by adjusting the vessel’s target speed to a user defined value.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

48

Figure 23: Vessel collision avoidance interactive simulator

3.4 Methods for the Exploration of Simulations Parameter Space

In this part we briefly present the algorithms that are going to be used for the purposes of
T4.2. Apart from calibrating the simulators, recall that we also want to explore the
effectiveness of interventions (or intervention policies) for example, at which crossroads to
place water barriers in a city, when to apply vaccination campaigns, or how to reroute a
vessel to reduce cruising costs. The values that parametrize the interventions, as well as
simulator-specific configurations, form an unexplored multidimensional space of parameter
values. T4.2 seeks to devise methods for effectively exploring such spaces and informing
the end-user about the results in a comprehensive manner. Specifically, we will rely on (i)
Active Learning [43] [44] for characterizing parameter spaces, (ii) Optimization [41] [42] for
estimating the parameter values that lead to the most desired simulation outcomes, (iii) Early
Time-series Classification [45] approaches for the early termination of non-relevant
simulations and time-consuming simulations, and (iv) Reinforcement Learning for estimating
effective policies for interventions. The corresponding methods are selected according to the
requirements of each scenario.

Active Learning

To explore the parameter space, we will rely on an approach that incorporates Active
Learning and has been proven effective in a similar application in the past [44]. According to
this method, the parameter values are considered as vectors of random values, always
within specific ranges that have been determined by domain experts. Each vector is
evaluated by initiating simulations that are configured with the respective parameter values,
and by assessing the simulation outcome. The assessment can either be the classification
of a particular simulation outcome, or a well-defined score metric that encodes the quality of
the simulation, i.e. with respect to a desired outcome, or the plausibility of the simulation.
Note also that in some cases, as e.g. in the multiscale simulations use-case of CREXDATA,

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

49

the evaluation can be quite time-consuming, because of the simulator’s complexity. Thus, it
is not realistic to perform exhaustive search.

To that end, the method that we will adopt utilizes a Random Forest (RF) classifier to create
a mapping of the parameter space based on some class labels. In the first algorithm iteration
a few random input vectors are generated, and then the corresponding simulations are
initiated. The data of these first simulation runs (e.g. vectors of parameter values coupled
with class labels) are used to train the RF. Since the classifier is trained using only a few
samples, we expect to have regions for which it is highly uncertain.

By sampling the most uncertain regions and by clustering the points included therein, we
come up with only a few points as cluster centres, which are subsequently evaluated by
invoking again the simulator. This process is repeated until a termination criterion is met,
e.g. we reach a maximum number of iterations.

As the iterations progress, the RF fits better to the unexplored space, and thus when the
algorithm terminates, we expect to have an accurate mapping of the interesting/relevant and
non-interesting/non-relevant simulation instances. This trained model can then be
incorporated into other workflows that are relevant to each scenario, i.e. visual analytics.

Optimization

Frequently, apart from characterizing the unexplored parameter space, it is desirable to
obtain optimized parameter values, e.g. those that are very close to an outcome that the
end-user seeks to obtain, or others that minimize some kind of cost. For this purpose, we
can rely on Genetic Algorithms (GA) [41], Covariance Matrix Adaptation (CMA) [42],
Bayesian Optimization (BO) [46], or other similar methods.

Early Time-Series Classification (ETSC)

Recall that, in some cases, the simulations might require a significant amount of time to
complete. Also, in some scenarios (e.g. during optimization) it is highly probable that many
non-interesting or non-relevant simulation instances will be initiated, and thus significant
amounts of computational resources are spent in vain. To overcome this issue, we
incorporate Early Time-Series Classification algorithms that can find the earliest time-point
of a time-series at which a reliable prediction regarding its class label can be made. If a time-
series is predicted to belong to any of such simulations, then the corresponding simulation
can be terminated early on in time, thus freeing up resources.

In parallel, several ETSC methods have been proposed in the literature, however there is a
lack of an experimental evaluation and comparison framework tailored to this domain. Also,
empirical results illustrate that not every ETSC algorithm is suitable for all application
domains [45]. To that end, in the context of CREXDATA we developed an open-source
framework for evaluating ETSC algorithms,12 which contains a wide spectrum of methods
and appropriate datasets. We also proposed a method for ETSC that relies on state-of-the-
art algorithms for full time-series classification, as this arsenal is significantly larger than the
pure ETSC algorithms.

12 https://github.com/xarakas/ETSC

https://github.com/xarakas/ETSC

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

50

To illustrate ETSC algorithms applicability, we performed a set of preliminary experiments,
using data from the CRAXDATA’s Multiscale Simulations sub-use-case. Data consists of
time-series of cell category counts throughout the course of simulations with different oxygen
levels, that is (i) the total number of cells, (ii) the total number of Epithelial cells, (iii) the Alive
Epithelial cells, (iv) the Apoptotic Epithelial cells, (v) the Necrotic Epithelial cells, and (vi) the
Infected Epithelial cells. The class labels are two, (a) the patient being in a non-critical
condition, and (b) the patient being in a critical condition. Our ultimate goal is to detect critical
condition simulations during their course as early as possible and terminate these instances
to free up resources to give space for the exploration of non-critical condition cases.

To create the dataset, we performed a series of 1000 PhysiBoSS runs with different
configuration parameters, which resulted to 356 cases of non-critical patient condition and
to 644 of critical condition. Considering the categorization of the datasets in [45], this
particular case is multivariate, large, and imbalanced. Taking this into account and combining
also the results from our empirical evaluation of ETSC algorithms to other application
domains, we recognized four of them as being the more promising with respect to ETSC-
oriented evaluation measures, such as accuracy, earliness, the harmonic mean between
earliness and accuracy, as well as training and testing times. Average results from a 5-fold
cross validation are shown in Figure 24.

Figure 24: Preliminary results of the ETSC algorithms applied on the Multiscale
Simulations CREXDATA sub-use-case

We can see that the best accuracy, F1-score, and harmonic mean are achieved by the
TEASER algorithm. Although ECEC’s performance is close enough for these metrics, we
can observe that it requires significantly higher training times. ECO-K and MINI perform

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

51

better in terms of earliness, however their lower accuracy and F1-score values do not render
them reliable for being applied in this case.

Reinforcement Learning

Additionally, we will develop a Reinforcement Learning (RL) approach for the
epidemiological scenario, where an agent learns its decision-making policy by engaging with
an environment itself. Through taking actions within the environment, the agent receives
feedback in the form of rewards or penalties, aiding it in determining the most favourable
actions across varying situations. This process allows the agent to iteratively improve its
decision-making abilities. We are currently developing the different component of the RL that
are described below.

Environment: The external system within which the agent acts. It responds to the actions
taken by the agent (changes states) and provides feedback in the form of rewards or
penalties. For us, this is the MMCA-Covid19 simulations.

State: A representation of the current situation or configuration of the environment. The
agent perceives the state and selects actions based on it. Currently, it is not very clear how
the States will be represented.

Action: The decision made by the agent based on the current state. Actions can lead to
transitions to new states and affect the rewards received. In our case, the actions correspond
to interventions being applied or retracted.

Reward: A numerical value provided e.g. by the environment to indicate the desirability of
the action taken by the agent in a particular state. The goal of the agent is to maximize the
cumulative reward over time. For us this could be a combination of the new cases,
hospitalizations, deaths, economic impact, etc.

Interactivity capabilities for each use-case will be investigated in the following months of
CREXDATA, also in synergy with “T5.2 Visual Analytics for Supporting XAI”, and “T5.3
Visual Analytics for Decision-Making Under Uncertainty”.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

52

4 Federated Machine Learning

Distributed Deep Learning (DDL) has emerged as an alternative paradigm to the traditional
centralized approach [[47], [48]] offering efficient handling of large-scale data across multiple
worker-nodes, enhancing the speed of training Deep Learning (DL) models and paving the
way scalable and resilient DL applications [[49] , [50], [51]].

Similarly, Federated Machine Learning (FML) builds upon the principles of DDL but takes a
different approach [52]: “It enables Machine Learning on distributed data by moving the
training to the data, instead of moving the data to the training”. Thus, FML enhances privacy,
remains compliant with data regulations, and mitigates risks associated with centralizing
data storage.

We will apply the algorithms described in this section to the Health Use Case and the
Weather Emergency Use Case, as outlined in D2.1. Specifically, in the epidemiological
scenario of the Health Use Case, the algorithms will be considered in the parameter
calibration and optimal intervention design process. In the Weather Emergency Use Case,
the algorithms will be considered in various sub-scenarios, such as guided data acquisition
(EM_UC_12), object detection (EM_UC_21), and smart sensing (EM_UC_30), among
others.

4.1 Related Work for Distributed & Federated Learning and
Drawbacks

The traditional DDL methods typically proceed by some local training, followed by parallel
sampling of local stochastic gradients at each worker. In the bulk synchronous parallel (BSP)
approach [53], the gradients are averaged, and then each worker’s solution is updated using
this average gradient in the Stochastic Gradient Descent (SGD) step [[54], [55]]. However,
a critical challenge inherent in these traditional techniques becomes evident during each
training iteration: the aggregation of gradients of DL models — often encompassing millions
to many billions of parameters — across workers introduces a significant communication
bottleneck, thereby restricting system scalability [56]. This leads to a low computation-to-
communication ratio [[57], [58]], resulting in inefficient hardware utilization. Furthermore,
limited bandwidth in wide-area networks significantly hinders collaborative training among
remotely connected workers [59]. Addressing the communication overhead to expedite DDL
algorithms has been a focal point of research for several years; speeding-up SGD is arguably
the single most impactful and transformative problem in machine learning [60].

In this context, strategies that aim to alleviate the communication burden can be grouped
into two main categories: (1) communication-efficient Local-SGD, where we perform several
local updates on workers before aggregation (e.g., Federated Averaging – FedAvg [47]), and
(2) deployment of accelerated SGD methods in DDL, since faster convergence naturally
translates to fewer communication rounds (e.g., FedAdam [61] extends Adam and FedAvgM
[62] extends SGD with momentum).

Problem formulation. Consider the distributed training of deep neural networks over
multiple workers [[63], [64]]. In this setting, each worker has access to its own set of training
data, and the collective goal is to find a common model that minimizes the overall training
loss. This scenario can be effectively modelled as a distributed parallel non-convex
optimization problem, formulated as follows:

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

53

min 𝐹 (𝑤)𝑤∈ℝ𝑑 ≜
1

𝐾
∑ 𝐹𝑘(𝑤)

𝐾

𝑘=1

(1)

Here, K is the number of workers and 𝐹𝑘(𝑤) ≜ Ε𝜁𝑘~𝐷𝑘
[𝑙𝑘(𝑤; 𝜁𝑘)] is the local objective function

for worker k with associated data distribution 𝐷𝑘. The local function 𝑙(𝑤; 𝜁𝑘) represents the

loss of the data sample 𝜁𝑘 given model parameter w.

Shortcomings in contemporary solutions. Communication-efficient DDL algorithms (e.g.,
FedAvg, FedAvgM, etc.) require predetermined and periodic round termination schedules.
They do not consider whether training progresses in a desirable way. Thus, they often
prescribe unnecessary synchronizations, something that makes them unsuitable for truly
communication-constraint federated environments such as the ones encountered in the
Weather Emergencies Use Case.

Summary. Our work addresses critical efficiency challenges in DDL, particularly in
communication-constraint environments, such as the ones encountered in Federated
Learning (FL) applications. We introduce and release Functional Dynamic Averaging (FDA),
a novel adaptive communication-efficient strategy in distributed deep learning. Our
contributions are as follows:

1. We propose FDA, which dynamically terminates training rounds by monitoring the

model variance. FDA drastically reduces communication requirements, while

ensuring cohesive progress towards the shared training objective.

2. We extend TensorFlow, TensorFlow Distributed and KungFu [65] to support

workflows like the ones we require for FDA (federated, and without predetermined

operations on participating learners – truly dynamic).

3. We evaluate and compare FDA with other DDL algorithms through an extensive suite

of unique experiments with diverse datasets, models, and tasks, requiring over 200K

GPU hours. This comprehensive approach significantly reduces the stochasticity

typically associated with training DNNs, thereby enabling us to draw more definitive

conclusions.

4. We show that FDA effectively balances the competing demands of communication

and computation costs, negating the need to compromise one for the benefit of the

other - unlike the conventional trade-offs encountered in the field.

5. We show that FDA effectively balances the competing demands of communication

and computation costs, negating the need to compromise one for the benefit of the

other - unlike the conventional trade-offs encountered in the field.

6. We demonstrate that FDA outperforms traditional and contemporary FL algorithms

by orders of magnitude in communication, while maintaining equivalent model

performance.

7. We show that FDA remains largely unaffected by various data heterogeneity settings,

maintaining comparable performance to the IID case.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

54

4.2 Relation to Use Cases

The Functional Dynamic Averaging (FDA) algorithm, with its communication-efficient and

model-agnostic nature, has significant potential across all three use cases. In the maritime

domain, FDA enables efficient federation between distributed data sources (e.g. networks of

sensors, ships, etc.) for forecasting hazardous situations at sea, resulting in robust and

timely training that aids in critical decision-making without excessive data transmission.

For weather emergency management, FDA's communication efficiency ensures that models

can be updated at near real-time with new data from disparate locations, enabling authorities

and first responders to proactively respond to severe weather events, thereby minimizing

impact and accelerating recovery efforts.

Similarly, in health crisis management, FDA supports the continuous, online analysis of

distributed epidemic data, enabling a more rapid monitoring of epidemics and the efficacy of

interventions, without the administrative burden of sharing data across authorities, thus

facilitating a better management of pandemic outbreaks.

Notably, FDA's compatibility with any scenario where model averaging is applicable
ensures its versatility across these diverse domains (and more), promising more effective
and cutting-edge federated learning solutions.

4.3 Functional Dynamic Averaging

Notation. At each time instance t, each worker k independently maintains its own set of

model parameters, denoted as 𝑤𝑡
(𝑘)

∈ ℝ𝑑. Let Δ𝑤𝑡
(𝑘)

 be the parameter update vector [66]

computed by some stochastic optimization algorithm (e.g., SGD, ADAM) encompassing the
learning rate and relevant gradients. Then, in a typical distributed learning step, each worker
k applies the following update:

𝑤𝑡+1
(𝑘)

= 𝑤𝑡
(𝑘)

+ Δ𝑤𝑡
(𝑘)

 (2)

For all worker-local vectors, let 𝑤𝑡 =
1

𝐾
∑ 𝑤𝑡

(𝑘)𝐾
𝑘=1 represent the average model at time t and

𝑤𝑡0
 the initial model shared among the workers at the start of the current communication

round. Moreover, we introduce the drift vector 𝑢𝑡
(𝑘)

, that is, the change to the local model of

the k-th worker at time t since the beginning of the current round at time t0, and 𝑢𝑡 as the
average drift:

𝑢𝑡
(𝑘)

= 𝑤𝑡
(𝑘)

− 𝑤𝑡0
, 𝑢𝑡 =

1

𝐾
∑ 𝑢𝑡

(𝑘)𝐾
𝑘=1 = 𝑤𝑡 − 𝑤𝑡0

Model Variance. The model variance quantifies the dispersion or spread of the worker
models around the average model. At time t, it is defined as:

𝑉𝑎𝑟(𝑤𝑡) =
1

𝐾
∑ ||𝑤𝑡

(𝑘)
− 𝑤𝑡||

2

2
𝐾

𝑘=1

  = (
1

𝐾
∑ ||𝑢𝑡

(𝑘)
||

2

2
𝐾

𝑘=1

 ) − ||𝑢𝑡||
2

2

(3)

This measure provides insight into how closely aligned the workers’ models are at any given
time. High variance indicates that the models are widely spread out, essentially drifting apart,
leading to a lack of cohesion in the aggregated model. Conversely, a moderate-low variance
suggests that the workers’ models are closely aligned, working collectively towards the

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

55

shared objective. The variance plays a critical role in our approach, as it helps to gauge the
state of the training process and make informed decisions about round termination.

Round Invariant. We introduce the Round Invariant (RI), a condition that bounds model
variance below a threshold, Θ:

𝑉𝑎𝑟(𝑤𝑡) ≤ Θ (4)

Our algorithm continuously monitors the model variance to maintain the RI. If the variance
estimate exceeds the threshold Θ at any point t, the training round immediately terminates.

This triggers synchronization, where all local model weights 𝑤𝑡
(𝑘)

 i are averaged and

consolidated into the new global model 𝑤𝑡.

Monitoring the RI. At this point, our focus shifts to devising a method to monitor the RI, as
defined in (4). To align with the general literature, we will restate the problem of monitoring
the RI using the standard distributed stream monitoring formulation. We begin by defining
the local state for each worker k, denoted by 𝑆𝑘(𝑡)  ∈  ℝ𝑝, which encapsulates information

from worker k at time t; it is updated arbitrarily. Next, we introduce the global state, 𝑆(𝑡)  ∈
 ℝ𝑝, which represents the collective state of the distributed system at time t.

𝑆(𝑡)  =  
1

𝐾
∑ 𝑆𝑘(𝑡)

𝐾

𝑘=1

(5)

Lastly, we define a special non-linear function 𝐻:  ℝ𝑝 ⟶ ℝ, with the following property:

𝐻(𝑆(𝑡))  ≤  Θ  ⟹  𝑉𝑎𝑟(𝑤𝑡)  ≤ Θ  ∀ 𝑡 (6)

Conceptually, if we define 𝑆𝑡(𝑡)  =   (||𝑢𝑡
(𝑘)

||
2

2

 ,  𝑢𝑡
(𝑘)

)   ∈  ℝ  ×  ℝ𝑑 and 𝐻(𝑣,  𝑥)  = 𝑣  − ||𝑥|| 2
2,

then it immediately follows from (3) that property (6) is satisfied. Direct monitoring of the RI
is hindered by the high dimensionality of 𝑆𝑘(𝑡), with d potentially ranging from millions to
many billions, values commonly found in DNNs. To mitigate this communication burden, we

must apply dimensionality reduction to the local drifts 𝑢𝑡
(𝑘)

 and identify an appropriate

function H, accordingly. However, this reduction in information within local states causes RI
monitoring to become approximate. Upcoming sections will detail three strategies–termed
"naive", "linear", and "sketch"–each offering a different balance between communication
efficiency and approximation accuracy.

Algorithm. The proposed FDA algorithm is formalized in Algorithm 1. To streamline notation,
t also denotes each training round, which unfolds into three main parts:

(1) Broadcast: Model wt is distributed to all workers (Line 3)

(2) Local Training: In essence, as long as we can guarantee the RI, each worker

continues training concurrently (Lines 4-9). Specifically, workers perform in-parallel

updates to their local models 𝑤𝑡
(𝑘)

 using mini-batch SGD, or some other optimization

algorithm, by processing their local data (Lines 5-7). After each update, workers

compute and broadcast their local states 𝑆𝑘(𝑡) (Line 8). Then the global state 𝑆(𝑡) is

calculated, and using the function H, an estimate of the model variance is derived

and compared with the threshold Θ (Line 9). Depending on this comparison, the local

training stage either repeats or terminates.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

56

(3) Model averaging: This stage is triggered since we can no longer guarantee the RI,

i.e.,𝐻(𝑆(𝑡))  >  Θ. At this point, all local models are communicated and then averaged

to form wt+1, that is, the next round’s global model (Lines 10-12)

Algorithm 1 Functional Dynamic Averaging - FDA

 Require: 𝑆𝑘(𝑡): The local state𝑆𝑘(𝑡)  ∈  ℝ × ℝ𝑝 with 𝑝  ≪  𝑑

 Require: 𝐻(𝑥): A function s.t. 𝐻(𝑆(𝑡))  ≤  Θ  ⟹  𝑉𝑎𝑟(𝑤𝑡)  ≤  Θ

 Require: K: The number of workers indexed by k

 Require: Θ: The model variance threshold

 Require: b: The local mini-batch size

1. Initialize 𝑤1 ∈  ℝ𝑑

2. for each round t = 1, 2,... do

3. communicate 𝑤𝑡to all workers

4. repeat

5. for each worker k = 1,..., K in parallel do

6. 𝐵𝑘 ⟵  (sample a batch of size b from 𝐷𝑘  )

7. 𝑤𝑡
(𝑘)

⟵  𝑤𝑡
(𝑘)

− 𝜂∇𝑙𝑘 (𝑤𝑡
(𝑘)

;  𝐵𝑘) ⊳ In-place

8. communicate 𝑆𝑘(𝑡)

9. until 𝐻(𝑆(𝑡))  >  Θ ⊳ As per (5)

10. for each worker k = 1,..., K in parallel do

11. communicate 𝑤𝑡
(𝑘)

12.
𝑤𝑡+1 ⟵

1

𝐾
∑ 𝑤𝑡

(𝑘)

𝐾

𝑘=1

4.3.1 Linear Approximation

In the linear approach, we reduce the 𝑢𝑡
(𝑘)

 vector to a scalar, that is, ⟨𝜉, 𝑢𝑡
(𝑘)

⟩   ∈  ℝ where 𝜉  ∈

 ℝ𝑑 is any unit vector. We define:

𝑆𝑘(𝑡)  =   (||𝑢𝑡
(𝑘)

||
2

2

,   ⟨𝜉, 𝑢𝑡
(𝑘)

⟩)   ∈  ℝ × ℝ,  ||𝜉||
2

= 1

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

57

𝐻(𝑣,  𝑥)  =  𝑣  −  𝑥2

Then, the condition 𝐻(𝑆(𝑡))  ≤  Θ implies 𝑉𝑎𝑟(𝑤𝑡)  ≤  Θ . Furthermore, a random choice of

𝜉 is likely to perform poorly (terminate a round prematurely), as it is likely to be close to
orthogonal to 𝑢𝑡. A good choice would be a vector correlated to 𝑢𝑡. A heuristic choice is to

take 𝑢𝑡0
, i.e., the change vector right before the current round started. All workers can

estimate this without communication cost as the difference of the models at the beginning of
the current and previous rounds:

𝜉  =  
𝑤𝑡0

− 𝑤𝑡−1

||𝑤𝑡0
− 𝑤𝑡−1

||
2

4.3.2 Sketch Approximation

An optimal estimator for ||𝑢𝑡||
2

2
 can be obtained through the utilization of AMS sketches, as

detailed in [67]. An AMS sketch of a vector 𝑣  ∈  ℝ𝑑 is an 𝑙 × 𝑚 real matrix Ξ:

𝑠𝑘(𝑣)  =  Ξ  =  [𝜉1 𝜉2 … 𝜉𝑙]𝑇 ∈  ℝ𝑙×𝑚,  𝑙  ⋅  𝑚  ≪  𝑑

The 𝑠𝑘(⋅) operator is linear and can be computed in 𝑂(𝑙  ⋅  𝑑) steps. Let 𝑙  =  𝑂 (log
1

𝛿
 ) and

𝑚 =  𝑂 (
1

𝜖2). The function

Μ2(Ξ)  =  𝑚𝑒𝑑𝑖𝑎𝑛 {||𝜉𝑖||
2

2
,  𝑖  =  1, … , 𝑙}

Is an excellent estimator of ||𝑣||
2

2
: with probability a least (1 − 𝛿), Μ2(𝑠𝑘(𝑣)) is within 𝜖-

relative error of ||𝑣||
2

2
. Consequently, we define:

𝑆𝑘(𝑡)  =   (||𝑢𝑡
(𝑘)

||
2

2

,  𝑠𝑘 (𝑢𝑡
(𝑘)

))   ∈  ℝ × ℝ𝑙×𝑚

𝐻(𝑣,  Ξ)  =  𝑣  −  
1

1 + 𝜖
𝑀2(Ξ)

Then, the condition 𝐻(𝑆(𝑡))  ≤  Θ implies 𝑉𝑎𝑟(𝑤𝑡)  ≤  Θ with probability at least (1 − 𝛿).

4.4 Extending TensorFlow and KungFu to support FDA workflows

4.4.1 TensorFlow Distributed

TensorFlow provides an API to facilitate training distribution across multiple GPUs,
machines, or TPUs, accommodating various use cases. MirroredStrategy supports
synchronous distributed training on multiple GPUs within a single machine. It creates one
replica of the model per GPU, with each variable mirrored across all replicas i.e., every
replica keeps its own local copy of every variable.

MultiWorkerMirroredStrategy extends the capabilities of MirroredStrategy to support
synchronous distributed training across multiple workers, each potentially equipped with
multiple GPUs. Like MirroredStrategy, it creates copies of all model variables on each device
across all workers, ensuring synchronization across all replicas.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

58

Typically, MultiWorkerMirroredStrategy executes a single training step on a batch of data for
one replica and aggregates gradients across all replicas before applying them. With our
necessary extensions to MultiWorkerMirroredStrategy, we apply gradients locally without the
default aggregation and later average the model weights, instead, when the RI can no longer
be guaranteed. Our implementation in TensorFlow supports both systems with the Slurm
workload manager and custom clusters (specified through IP and Port information).

4.4.2 KungFu

KungFu [65] is a distributed machine learning library for TensorFlow. Its focus is to provide
fast inter-GPU communication making use of the Nvidia Collective Communications Library
(NCCL). NCCL is following on the Message Passing Interface (MPI) and achieves peer-to-
peer communication by designing a bidirectional ring topology based on the actual topology
of the network’s GPUs. KungFu also offers custom tree topologies for the network of clients.
This custom topology setting proved useful in simulating challenging network conditions
prominent in Federated Learning scenarios.

We extend KungFu to be an easily deployable implementation of Functional Dynamic
Averaging (FDA) and an alternative to Distributed TensorFlow. The standard periodic
synchronization scheme was transformed to a dynamic one.

The experiments were also executed on a High-Performance Computing (HPC) setting using
the Slurm Workload Manager. For a detailed analysis of the work done on KungFu please
refer to the corresponding integrated master thesis [68].

4.4.3 Simulations with TensorFlow

Utilizing TensorFlow Distributed or KungFu entails incurring communications costs between
workers, thereby slowing down our extensive suite of experiments by a lot. To mitigate this,
we developed a package to simulate the DDL, via FDA, without actual inter-worker
communication. A detailed exposition of this package can be found in [69].

4.5 Experiments & Comparison to Prior Work

Table 6: Setup

Neural Network d Dataset Θ b K Optimizer Algorithms

LeNet-5 62K MNIST {0.5, 1, 1.5,
2, 3, 5, 7}

32 {5, 10 ... , 60} Adam FDA, Synchronous,
FedAdam

VGG16* 2.6M MNIST {20, 25, 30,
50, 75, 90,

100}

32 {5, 10 ... , 60}

Adam

FDA, Synchronous,
FedAdam

DenseNet121 6.9M CIFAR-
10

{200, 250,
275, 300,
325, 350,

400}

32 {5, 10 ... , 60}

SGD-NM FDA, Synchronous,
FedAvgM

DenseNet201 18M CIFAR-
10

{350, 500,
600, 700,
800, 850,

900}

32 {5, 10 ... , 60}

SGD-NM

FDA, Synchronous,
FedAvgM

ConvNeXtLarge

(fine-tuning)

197M CIFAR-
100

{25, 50, 100,
150}

32 {3, 5}

AdamW FDA, Synchronous

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

59

Datasets & Models. The core experiments involve training Convolutional Neural Networks
(CNNs) of varying sizes and complexities from scratch on two datasets: MNIST [70] and
CIFAR-10 [71]. For the MNIST dataset, we employ LeNet-5 [72], composed of approximately
62 thousand parameters, and a modified version of VGG16 [73], denoted as VGG16*,
consisting of 2.6 million parameters. VGG16* was specifically adapted for the MNIST
dataset, a less demanding learning problem compared to ImageNet [74], for which VGG16
was designed. In VGG16*, we omitted the 512-channel convolutional blocks and
downscaled the final two fully connected (FC) layers from 4096 to 512 units each. Both
models use Glorot uniform initialization [75]. For CIFAR-10, we utilize DenseNet121 and
DenseNet201 [76], as implemented in Keras [77], with the addition of dropout regularization
layers at rate 0.2 and weight decay of 10-4, as prescribed in [76]. The DenseNet121 and
DenseNet201 models have 6.9 million and 18 million parameters, respectively, and are both
initialized with He normal [78]. Lastly, we explore a transfer learning scenario on the CIFAR-
100 dataset [71], a choice reflecting the DL community's growing preference of using pre-
trained models in such downstream tasks [[79], [80]]. For example, a pre-trained visual
transformer (ViT) on ImageNet, transferred to classify CIFAR-100, is currently on par with
the state-of-the-art results for this task [81]. We adopt this exact transfer learning scenario,
leveraging the more powerful ConvNeXtLarge model, pre-trained on ImageNet, with 198
million parameters [77]. Following the feature extraction step [66], the testing accuracy on
CIFAR-100 stands at 60%. Subsequently, we employ and evaluate our FDA algorithms in
the arduous fine-tuning stage, where the entirety of the model is trained [82].

Algorithms. We consider five distributed deep learning algorithms: LinearFDA, SketchFDA,
Synchronous, FedAdam [61], and FedAvgM [62]; the first three are standard in all
experiments. Depending on the local optimizer, Adam [83] or SGD with Nesterov momentum
(SGD-NM) [84], we also include their federated counterparts FedAdam or FedAvgM,
respectively. Notably, Synchronous was derived from the Bulk Synchronous Parallel
approach; can be understood as a special case of the FDA Algorithm 1 where Θ is set to
zero.

Evaluation Methodology. Comparing DDL algorithms is not straightforward. For example,
comparing DDL algorithms based on the average cost of a training epoch can be misleading,
as it does not consider the effects on the trained model's quality. To achieve a
comprehensive performance assessment of FDA, we define a training run as the process of
executing the DDL algorithm under evaluation, on (a) a specific DL model and training
dataset, and (b) until a final epoch in which the trained model achieves a specific testing
accuracy (termed as Accuracy Target in the Figures). Based on this definition, we focus on
two performance metrics:

1. Communication cost, which is the total data (in bytes) transmitted by all workers.

Translating this cost to wall-clock time (i.e., the total time required for the computation

and communication of the DDL) depends on the network infrastructure connecting

the workers. Its impact is larger in FL scenarios, where workers often use slower Wi-

Fi connections.

2. Computation cost, which is the number of mini-batch steps (termed as In-Parallel

Learning Steps in the Figures) performed by each worker. Translating this cost to

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

60

wall-clock time is determined by the mini-batch size and the computational resources

of the nodes. Its impact is larger for nodes with lower computational resources.

Hyper-Parameters & Optimizers. Hyper-parameters unique to each training dataset and
model are detailed in Table 6; Θ is pertinent to FDA algorithms and not applicable to others.
Notably, a guideline for setting the parameter Θ is provided in Section 3.4.2. For experiments
involving FedAvgM and FedAdam, we use E = 1 local epochs, following [61]. For
experiments with LeNet-5 and VGG16*, local optimization employs Adam, using the default
settings as per [35]. In these cases, FedAdam also adheres to the default settings for both
local and server optimization [[77], [61]]. For DenseNet121 and DenseNet201, local
optimization is performed using SGD with Nesterov momentum (SGD-NM), setting the
momentum parameter at 0.9 and learning rate at 0.1 [76]. For FedAvgM, local optimization
is conducted with default settings [[77], [62]], while server optimization employs SGD with
momentum, setting the momentum parameter and learning rate to 0.9 and 0.316,
respectively [61]. Lastly, for the transfer learning experiments, local optimization leverages
AdamW [85], with the hyper-parameters used for fine-tuning ConvNeXtLarge in the original
study [86].

Data Distribution. In all experiments, the training dataset is divided into approximately equal
parts among the workers. To assess the impact of data heterogeneity, we explore three
scenarios: (1) independent and identically distributed (IID) setup, (2) percentage-wise non-
IID setup: a portion of the dataset is sorted and sequentially allocated to workers with the
remainder distributed in an IID fashion, and (3) label-specific non-IID setup: assignment of
all samples from a specific label to a few workers while distributing the rest in an IID fashion,
introducing label-centric data concentration. All three scenarios of data heterogeneity are
evaluated using the same hyper-parameters. A constant aspect across our various
experiments, for a specific data heterogeneity setting, is the data partitioning, solely based
on the number of workers involved. For example, in the IID setting, for all tests involving K =
25 workers, data partitioning remains consistent.

4.5.1 Results

Due to the extensive set of unique experiments (over 1000), as detailed in Table 6, we
leverage Kernel Density Estimation (KDE) plots [87] to visualize the bivariate distribution of
computation and communication costs incurred by each strategy for attaining the Accuracy
Target. These KDE plots provide a high-level overview of the cost trade-off for training
accurate models. As an illustrative example, Figure 25 depicts the strategies' bivariate
distribution for the LeNet-5 model trained on MNIST with different data heterogeneity setups.
In these plots, the SketchFDA distribution is generated from experiments across all hyper-
parameter combinations (Θ and K in Table 1) that attained the Accuracy Target of 0.985.

FDA balances Communication vs. Computation. DDL algorithms face a fundamental
challenge: balancing the competing demands of computation and communication. Frequent
communication accelerates convergence and potentially improves model performance, but
incurs higher network overhead, an overhead that may be prohibitive when workers
communicate through lower speed connections. Conversely, reducing communication saves
bandwidth but risks hindering or even stalling convergence. Traditional DDL approaches,
like Synchronous, require synchronizing model parameters after every learning step, leading
to significant communication overhead but facilitating faster convergence (lower computation
cost). This is evident in Figure 25, Figure 26, and Figure 27 (where Synchronous appears in
the bottom right --- low computation, very high communication). Conversely, Federated

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

61

Optimization (FedOpt) methods [61] are designed to be very communication-efficient,
drastically reducing communication between devices (workers) at the expense of increased
local computation. Indeed, as shown in the aforementioned figures, FedAvgM and FedAdam
reduce communication by orders of magnitude but at the price of a corresponding increase
in computation. Our two proposed FDA strategies achieve the best of both worlds: the low
computation cost of traditional methods and the communication efficiency of FedOpt
approaches, as in Figure 25, Figure 26, and Figure 27. In fact, they significantly outperform
FedAvgM and FedAdam in their element, that is, communication-efficiency. Across all
experiments, the FDA methods' distributions lie in the desired bottom left quadrant --- low
computation, very low communication.

FDA counters diminishing returns. The phenomenon of diminishing returns states that as
a DL model nears its learning limits for a given dataset and architecture, each additional
increment in accuracy may necessitate a disproportionate increase in training time, tuning,
and resources [[66], [88]]. We first clearly notice this with VGG16* on MNIST in Figure 26
for all three data heterogeneity settings. For a 0.001 increase in accuracy (effectively 10
misclassified testing images) FedAdam needs an order of magnitude more computation and
communication. Similarly, Synchronous requires comparable increases in computation and
approximately half an order of magnitude more in communication. On the other hand, the
FDA methods suffer a slight (if any) increase in computation and communication for this
accuracy enhancement. For DenseNet121 and DenseNet201 on CIFAR-10 (Figures omitted
due to space constraints), FedAvgM and Synchronous require half an order of magnitude
more computation and communication to achieve the final marginal accuracy gains (0.78 to
0.81 for DenseNet121, and 0.78 to 0.8 for DenseNet201). In contrast, the FDA methods
have almost no increase in communication and comparable increase in computation.

FDA is resilient in data heterogeneity. In DDL, data heterogeneity is a prevalent challenge,
reflecting the complexity of real-world applications where the IID assumption often does not
hold. The ability of DDL algorithms to maintain consistent performance in the face of non-IID
data is a critical metric for their effectiveness and adaptability. Our empirical investigation
reveals the FDA methods' noteworthy resilience in such heterogeneous environments. For
LeNet-5 on MNIST, as illustrated in Figure 25, the computation and communication costs
required to attain a test accuracy of 0.985 show negligible differences across the IID and the
two Non-IID settings (Label "0", 60%).

Figure 25: LeNet-5 on MNIST

Similarly, for VGG16* on MNIST, Figure Figure 26 demonstrates that achieving a test
accuracy of 0.995 incurs comparable computation and communication costs across the IID
and the two Non-IID settings (Label "0", Label "8"); while overall costs are aligned, the

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

62

distributions of the computation costs exhibit greater variability, yet remain closely consistent
with the IID scenario.

Figure 26: VGG16* on MNIST

FDA generalizes better. The factors determining how well a DL algorithm performs are its
ability to: (1) make the training accuracy high, and (2) make the gap between training and
test accuracy small. These two factors correspond to the two central challenges in DL:
underfitting and overfitting [66]. For DenseNet121 on CIFAR-10, with a test accuracy target
of 0.8, as illustrated in Figure 28, Synchronous and FedAvgM exhibit overfitting, with a
noticeable discrepancy between training and test accuracy. In stark contrast, the FDA
methods have an almost zero accuracy gap. Turning our focus to DenseNet201 on CIFAR-
10, with a test accuracy target of 0.78, Synchronous again tends towards overfitting, while
FedAvgM shows a slight improvement but still does not match the FDA methods, which
continue to exhibit exceptional generalization capabilities, evidenced by a minimal training-
test accuracy gap (Figure 26). Notably, given the necessity to fix hyper-parameters Θ and K
for the training accuracy plots, we selected two representative examples. The patterns of
performance we highlighted are consistent across most of the tests conducted.

Figure 27: DenseNet121 and DenseNet201 on CIFAR-10

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

63

Figure 28: Training accuracy progression with a (test) accuracy target of 0.8 (left),
and 0.78 (right). A smaller final gap between training and target accuracy indicates

less overfitting, i.e., better generalization capabilities of the trained model

Dependence on K. In distributed computing, scaling up typically results in proportional
speed improvements. In DDL, however, scalability is less predictable due to the nuanced
interplay of computation and communication costs with convergence, complicating the
expected linear speedup. This unpredictability is starkly illustrated with LeNet-5 and VGG16*
on the MNIST dataset across all data heterogeneity settings and all strategies. Specifically,
Figure 29 demonstrates (at its left part) that increasing the number of workers does not
decrease computation -- except for FedAdam which begins with significantly high
computation -- but rather exacerbates communication (shown at the left part of the figure).
These findings are troubling, as they reveal scaling up only hampers training speed and
wastes resources. However, for more complex learning tasks like training DenseNet-121
and DenseNet-201 on CIFAR-10 (Figure 30 and Figure 31), the expected behaviour
emerges. Scaling up (K increase) leads to a decrease in computation cost for all strategies.
Communication cost, however, increases with K for all methods except Synchronous, which
maintains constant communication irrespective of worker count, but at the expense of orders
of magnitude higher communication overhead. Notably, while our findings might, in some
cases, suggest potential speed benefits of not scaling up (smaller K), DDL is increasingly
conducted within federated settings, where there is no other choice but to utilize the high
number of workers.

Figure 29: VGG16* on MNIST – Accuracy Target: 0.994

FDA: Dependence on Θ. The variance threshold Θ can be seen as a lever in balancing
communication and computation; essentially, it calibrates the trade-off between these two
costs. A higher Θ allows for greater model divergence before synchronization, reducing
communication at the cost of potentially increased computation to achieve convergence.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

64

This impact of Θ is consistently observed across all two FDA strategies, learning tasks, and
data heterogeneity settings (Figure 29, Figure 30 and Figure 31). Interestingly, for more
complex models like DenseNet121 and DenseNet201 on CIFAR-10, increasing the variance
threshold (Θ) does not lead to a significant rise in computation cost, as illustrated in Figure
30 and Figure 31. It suggests that the FDA methods, by strategically timing synchronizations
(monitoring the variance), substantially reduce the number of necessary synchronizations
without a proportional increase in computation for the same model performance; this is
particularly promising for complex DDL tasks.

Figure 30: DenseNet121 on CIFAR-10 – Accuracy Target: 0.8

Figure 31: DenseNet201 on CIFAR-10 – Accuracy Target: 0.78

FDA: Choice of Θ. The experimental results suggest that selecting any Θ within a specific
order of magnitude (e.g., between 102 and 103 for DenseNet201) ensures convergence, as
demonstrated in (Figure 29, Figure 30 and Figure 31). Therefore, identifying this range
becomes crucial. To this end, we conducted extensive exploratory testing to estimate the Θ
ranges for each learning task which are predominantly influenced by the number of
parameters d of the DNN. Within this context, Θ values outside the desirable range exhibit
notable effects: below this range, the training process mimics Synchronous or Local-SGD
approaches with small τ, while exceeding it leads to non-convergence.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

65

Figure 32: Empirical Estimation of the Variance Threshold

Subsequently, having identified the optimal ranges for Θ, we selected diverse values within
them for our experimental evaluation (Table 6), thereby investigating different computation
and communication trade-offs. For instance, in the ARIS-HPC environment with an
InfiniBand connection (up to 56Gb/s), experiments show that training wall-time (the total time
required for the computation and the communication of the DDL) is predominantly influenced
by computation cost, rendering communication concerns negligible. In such contexts, lower
Θ values are favoured due to their computational efficiency. On the contrary, in FL settings,
where communication typically poses the greater challenge, opting for higher Θ values
proves advantageous; reduction in communication achieved with higher Θ values will
translate in a large reduction in total wall-time. To assist researchers in selecting an optimal
variance threshold, Figure 32 presents empirical estimations for Θ across three distinct
learning settings: FL (assuming a common channel of 0.5 Gbps), Balanced (communication-
computation equilibrium), and HPC.

FDA: Linear vs. Sketch. In our main body of experiments, across most learning tasks and
data heterogeneity settings, the two proposed FDA methods exhibit comparable
performance, as illustrated in Figure 25, Figure 26, and Figure 27. This suggests that the
precision of the variance approximation is not critical; occasional "unnecessary"
synchronizations do not significantly impact overall performance. However, in all
experiments within the more intricate transfer learning scenario, LinearFDA requires
approximately 1.5 times more communication than SketchFDA to fine-tune the deep
ConvNeXtLarge model to equivalent performance levels (Figure 33). In light of these
findings, we conclude the following: for straightforward and less demanding tasks,
LinearFDA is the recommended option due to its simplicity and lower complexity per local
state computation. On the other hand, for intricate learning tasks and deeper models,
SketchFDA becomes the preferred choice, particularly if communication-efficiency is
paramount.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

66

Figure 33: ConvNeXtLarge on CIFAR-100 (transfer learning from ImageNet) —
Deployment of FDA during the fine-tuning stage with Accuracy Target of 0.76

FDA on various topologies. We used KungFu [65] to run similar experiments to the other
two approaches (TensorFlow Simulations and Distributed TensorFlow), with similar results
that showcase the effectiveness of the FDA methods in communication reduction. In addition
to the other methods, using KungFu we had the opportunity to perform our experiments on
different network topologies (Figure 34). Furthermore, three different topologies were used
for these experiments, one being the default ring topology of KungFu and NCCL, a binary
tree and a star topology. We chose to test these topologies for the maximum number of
clients available as communication cost would be more prominent. Bearing in mind that
communication is more expensive for the new network topologies, we assumed that the
training performance of the FDA methods would be even more beneficial. This is clear in the
figures above, as the FDA methods perform much better in real training time for 50 epochs.
This means that they would be much needed for scenarios where the communication cost
is high. For the experimental hyper-parameters please refer to the diploma thesis [68].

Figure 34: Communication time distribution with variable topology

4.6 FDA in NeRF computation for the Weather Emergencies Use
Case

4.6.1 NeRF and distributed pipeline planning

Neural Radiance Field (NeRF) is a method that uses deep learning and can create
photorealistic 3D representations of scenes. A basic NeRF model requires the input of 2D
images of the scene, along with proper metadata describing the camera positioning. Our
work on FDA and distributed deep learning could be used in the future to distribute the
training process of NeRFs to multiple computing nodes, while also avoiding the transfer of
images to a central location. With this in mind, we delved into the largely open problem of
distributed NeRF training.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

67

The metadata of the images are also called poses and are usually a 6 degrees of freedom
variable depicting where the camera was located during the image capture (translation) and
its viewing direction (rotation). The poses of the camera are not known a-priori, and they can
be calculated using a Structure from Motion (SfM) algorithm like COLMAP [89]. These
algorithms can extract these images metadata by finding and linking key-points that can be
found in different images of the dataset. This SfM phase, prior to NeRF training, should also
be distributed among the nodes of the network.

Now we can describe an ideal pipeline so that we can distribute the NeRF training process
during the use case of a weather emergency. Let’s say a weather emergency happens in a
large scene and we want to deploy a group of drones to scan the area capturing 2D images.
These images should ideally be transmitted to multiple GPU-equipped mobile computing
centres located as close to the drones as possible. Each such server would end up having
a subset of the total of images and running SfM experiments using them. The SfM camera
poses located on different servers get aligned using their camera’s GPS sensors data. Then
each server trains a local NeRF model based on their own data. After some time, or when
the FDA method indicates, all local NeRF models are transmitted in a central location where
they get aggregated accordingly to a global NeRF. This global NeRF model can then be
used to render novel views of the area in 3D by civil protection personnel.

4.6.2 Experimentation and limitation

To organize and perform the experiments, we have collaborated with the Deutsches
Rettungsrobotik-Zentrum (DRZ) through extensive meetings. DRZ provided a dataset of 249
images taken by a DJI M30T drone, depicting their premises in Dortmund from various
angles. The scene includes cars and a rubble area and resembles actual scenarios of the
weather emergency use case. We aim for the resulting 3D representation to include these
details in high resolution Figure 35.

We have experimented with different kinds of Structure from Motion (SfM) algorithms such
as WebODM, COLMAP [89], Hierarchical Localization [90] and Pixel Perfect SfM [91]. We
have concluded that COLMAP is more than enough to estimate camera poses adequately.
As for NeRF models, we have mostly focused on the Nerfacto model, a model created for
the NeRF framework Nerfstudio [92]. We have extended Nerfstudio to be able to conduct
distributed learning simulations, using groups of images that are distributed either uniformly
or in geographical blocks. The results of distributed experiments are promising, especially
for multiple clients, in terms of reducing the training time required.

The main obstacle, that is currently work in progress, is improving the resulting global model.
The aggregated model rendered images exhibit some “waving” effects that reduce the quality
and sharpness of them. This is most likely caused by noise between the pose estimation of
different SfM models.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

68

Figure 35: Experimental setup

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

69

5 Optimized Distributed Analytics as a Service

5.1 Motivation and Optimization Aspects in CREXDATA

From its very foundation, the architectural framework of CREXDATA, as described in
Deliverable D3.1, operates across the cloud to edge continuum including the lot of available
devices. From resource constrained sensors, of medium processing and memory capacity,
to fog devices and powerful servers at the cloud side. The naïve approach of executing the
prescribed extreme scale analytics only at the cloud side is not scalable as it entails a number
of important disadvantages. First, naively relaying the continuously produced streaming data
at the cloud side incurs extreme network load depleting the available bandwidth. This
diminishes the potential for scalability in the federated setting [93] and, in turn, causes
network latencies. Such latencies hinder the execution of analytics pipelines in a real-time,
online fashion. Second, at the edge side of the network, data transmission is by far the main
culprit in energy drain for battery powered edge devices [94]. Therefore, transmitting the raw
data reduces the network lifetime and increases administrative and equipment costs. Third,
all the devices across the cloud to edge continuum have some, variable and potentially
limited; though existing, processing power. By naively using every node in the network only
as a data producer or relay node, one does not exploit the full, aggregative processing power
of the network.

Hence, the preferable way to go is to distribute the processing load of an extreme scale
analytics workflow across the devices of the network based on the computational, memory
demands of each operator (relational, Machine Learning, Neural Learning or User Defined
Function operator) and the computational capacity of each device. However, this is easier
said than done because the involved task is a combinatorial optimization resource allocation
problem of interconnected tasks (operators), each of which can be executed in multiple
devices; and based on the devices it chooses for itself, it affects the performance of all
upstream (to which it provides input) operators of the workflow.

On the other hand, it would be error prone to allow the user or the application to manually
decide on which device each operator will be executed since, in extreme scale scenarios,
the potential performance of a number of concurrently executed workflows and/or the
number of the devices of the network is not tractable by a human operator. Therefore, what
we need for optimized streaming analytics as a service in the scope of CREXDATA is an
algorithmic suite which automates the optimization process under any workflow(s) and
network set up. Each algorithm of this suite receives as input a logical workflow. A logical
workflow incorporates the application logic, but is deprived from the actual, physical
execution details. The output of each algorithm is a physical execution plan or physical
workflow where, for each of the operators of the logical workflow(s), it automatically
prescribes the device(s) it will be executed on, along with possible execution options
(discussed shortly).

Consider, for instance, Figure 36. On the left-hand side there is a logical workflow, while on
the right-hand side, an example of physical, small-scale network is depicted. The
optimization suite of CREXDATA should decide on the mapping of operators to the physical
devices for execution. However, it can easily be observed that there is a large number of
possible mappings per operator as well as combinations of operators.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

70

Figure 36: Logical Plan and Physical Network. The CREXDATA Optimized Analytics
as a Service should device the placement of Logical Plan Operators to Physical

Devices

More precisely, in the general case, a wide variety of options regarding the physical
execution of an operator exist:

i. An operator may be assigned for execution one out of the entire set or to one out of
a subset of the available devices. Depending on the capacity of the device and the
computational, memory demands of the operator.

ii. An operator may be replicated to multiple devices, or be assigned to only one device.
It may also get executed on a device under a certain degree of parallelism.

iii. An operator (e.g., Neural Learning operator) may be executed in a distributed fashion
at the cloud side or across the network in a federated way.

iv. An operator may be assigned to a device choosing to prefetch or cache its data and
transmit them only upon demand.

v. An operator may send its raw data or a subset (e.g., sample) of them.

To better understand the complexity of the problem at hand, one should consider that if:

• O operators in the CREXDATA workflow(s)

• P possible options in categories (ii)-(v) per operator

• S network devices/sites (category (i) above)

exist, an exhaustive search algorithm has a search space of (P*S)O
 possible plans.

What is more, is that the above are not one-shot decisions, but may need to get revised as
time passes. This is due to the fact that new sites may enter or depart from the network or
because the statistical properties of the ingested streams and, thus, of the workload may
change. This says that in a highly volatile, extreme scale, streaming setup it may not be
worthwhile to invest a large amount of time in prescribing a physical workflow by the time a
logical workflow is submitted, but instead, start with a good enough physical plan, monitor
its performance and adjust the execution as time passes.

For instance, Figure 37a shows the evolution of the execution of a logical workflow initially

deployed entirely at the cloud side (denoted by the Apache Flink icon on each operator)
at time t0. Then, at time t1, the optimizer discovers a new physical plan, stops the execution

of the previous one and chooses to change the rightmost, bottom operator from to the
 site (Figure 37b). This operator, as is the case with all operators at the bottom of the

logical workflow (Figure 36), is a filter operator. Therefore, after an instant placement at time
t0, the optimizer sees the opportunity to distribute the load to one more site () and also

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

71

reduce the network load by filtering (choosing a subset of the produced streams) at the fog
side rather than currying the raw data to the cloud.

(a)

(b)

(c)

(d)

Figure 37: Different physical plans prescribed as time passes from t0 to tk+2

Continuing our running example at time tk+1, Figure 37c shows that the optimizer has chosen
to act similarly for all filter operators at the bottom of the workflow, assigning their execution
to more sites at both the fog and the edge side of the network. Furthermore, each of these
operators has been replicated to multiple sites in order to further reduce the processing load
and restrict bandwidth consumption. For instance, the rightmost filter operator at the bottom

of the workflow is now executed at a fog device , an edge – sensor device and

another, mobile edge site . Finally, Figure 37d shows the final execution plan devised by
the optimizer where also the topmost Machine Learning operators of the workflow are
chosen to get executed in a federated way.

Given the above, the optimization approach in CREXDATA accounts for arbitrarily large-
scale settings including arbitrarily many workflows, arbitrarily many sites, arbitrarily many
physical execution options, the volatility of the network setup and the data stream
characteristics. The approach CREXDATA chooses to achieve these goals can be
summarized in the following key optimization concepts:

• It starts with an instantly devised, empirically good enough plan,

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

72

• as the initial plan is executed, the chosen algorithm from CREXDATA algorithmic
suite continues executing at the background to improve the running physical plan,

• all algorithms are inherently parallel in nature during the exploration of all or a vast
amount of possible physical plans from the arbitrarily large sized search space, to
achieve exploring as many candidate physical plans as possible in an sorter period
of time,

• the suite includes exhaustive search, sampling-based and greedy algorithms
trading the algorithm execution time for the goodness of the devised physical plan.

The parallel nature of CREXDATA algorithms themselves (not of the parallel execution of
the workflows) is a unique feature in the relevant literature [95] [96] [97] [98] [99].

5.2 Optimization Setup

CREXDATA optimizes logical workflows devising physical plans based on the following
performance criteria:

• Throughput [T]: number of input tuples being processed per time unit,

• Latency [L]: including both network and processing latency, which measures the time it
takes for a data item to get ingested into the executed physical workflow and get out of
it as a processed tuple,

• Communication Cost [C]: which quantifies the amount of communicated data throughout
the network as an indicator of the bandwidth consumption incurred by a chosen physical
plan,

• Energy Consumption [E]: this is an optional criterion included to measure the total
amount of energy getting consumed by the running physical workflow(s). It is often useful
to measure the lifetime of the network (recall that the network also consists of battery
powered devices and loses its functionality as more devices become non-operational
due to energy drains).

Figure 38: Illustration of Pareto Optimal Physical Plans

CREXDATA optimized analytics-as-a-service algorithms seek to find Pareto optimal
solutions (physical plans). That is, physical plans that are not dominated, in each and every
of the aforementioned performance dimensions, from others. Figure 38 provides an
illustration of how a number of possible physical execution plans can be represented in a
three-dimensional space encompassing the first three of the aforementioned metrics. Blue
dots correspond to physical plans/workflows that are dominated in every dimension by
others. Pareto optimal physical plans are those whose performance corresponds to the red
dots. In order to choose among the Pareto optimal physical plans (red dots), CREXDATA
optimization uses a convex combination of the various performance [T,L,C] measures.

Each physical workflow is represented (as also shown in Figure 37) as a graph, where each
operator is mapped to its physical execution specifications. We call the initial workflow
devised at time t0 in the example of Section 5.1 as the root plan. But, in general, we term the

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

73

currently executed physical plan (at any time tk) as the root plan. While the root plan is
executed, the CREXDATA optimization algorithm keeps operating at the background and
explores more, potentially better physical execution plan opportunities. To do that, each of
the algorithms in our algorithmic suite operates on a Graph of Graphs (GoG).

Figure 39: Two Nodes of the Graph of Graphs representation of the CREXDATA
streaming analysis as a service

Each node of the GoG includes a physical workflow (i.e., a nested graph). Note that in the
general case a node of the GoG may include a set of nested graphs if we want to
simultaneously optimize many logical workflows. Nonetheless, for ease of exposition we
henceforth assume a single logical workflow is being optimized and thus, a nested graph is
a possible physical workflow of a single logical one.

An edge between nodes of the GoG is an action that performs a single change to the
execution options or site(s) of just one operator of a physical workflow. As an example,
Figure 39 shows a root plan with all operators placed at the cloud side. This plan is the red
node of the GoG. To visit/explore the performance of another, green node of the GoG, an

action that migrates the rightmost, bottom operator of the root physical workflow, from
to , is applied. This action yields a new physical plan with its own overall cost and a
migration cost. The migration cost involves the cost that should be accounted for increased
latency or zero throughput during if we decide to switch between the root and the candidate
new plan. If Cost Root Plan – Cost Candidate Plan + Migration Cost is a very negative (or
very positive if we reverse the signs) value, this means that, for instance the green plan in
Figure 39, improves per capita the root plan. Therefore, the green physical plan should be
deployed instead.

But, of course, the green plan is just one node of the GoG, visited based on a single action.
There are other actions in the root plan that can be applied in order to lead to other green
nodes, i.e., candidate physical plans. Moreover, upon applying two actions instead of one,
we have candidate physical plans that are two hop neighbours of the root plan. Two-hope
neighbours are physical plan yielded from the root one after applying 2 actions (changes),
three-hop neighbours are yielded from applying 3 actions to the root plan and so on.
Therefore, the search space over which the CREXDATA algorithmic suit operates looks as
depicted in Figure 40.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

74

Figure 40: Graph of graphs (GoG) as the search space encompassing all possible
physical plans - workflows for a given set of workflows and a network setting. Each
node in the figure includes a nested graph which is a physical plan/workflow. Edges
correspond to simple, single actions (changes) leading from one physical workflow

to another.

5.3 Algorithmic Suite

5.3.1 Exhaustive Search (ESC) Algorithm

CREXDATA’s exhaustive search approach creates the physical plan space by enumerating
all possible nodes of the GoG using counting and number base switch. The algorithm is
based on the enumeration of all possible plans using workflow signatures. Workflow
signatures are formed as follows. For O operators, equivalently termed vertices in the scope
of our algorithms, P execution options per operator/vertex and S sites, the possible plans
are: (P * S) ^ O. We consider each vertex as a vector that can take P*S values and construct
an index into the O vectors as a O-digit, base-(P*S) number. Each digit of this number is an
index into one of series of vertex vectors representing a nested physical plan in the GoG.

For example, for a flow with 4 vertices and 4 possible values (e.g., 2 execution options (as
an example, replication 2 or no replication) and 2 “change site” actions), we count from 0 to
44=256, convert each number to 4 base-4 digits, and use these digits as indices into the
vertex vectors to get a physical plan which corresponds to a nested node in the GoG. In this
example, the possible actions are [P1|S1, P1|S2, P2|S1, P2|S2]. Hence, the number 164
maps to 2210 after base change, which represents the plan: O1(P2S1) -> O2(P2S1) ->
O3(P1S2) -> O4(P1S1). The pseudocode of the parallel Exhaustive Search with Counting
(ESC) is detailed in Algorithm 2.

ESC is straightforwardly parallelizable as each worker can compute a single plan and its
cost independently from the other workers. The algorithm explores the entire search space
of physical plans.

In Lines 4-5 of Algorithm 2, the algorithm starts with the root plan and its cost. Line 6 starts
a pool of threads for parallelization purposes and Line 7 computes the cardinality of the
search space (number of possible physical plans). The for loop in Lines 8-11 takes in the

sequential number of a plan and creates tasks for the workers. Each task that is created with
the purpose of executing an instance of the planWorker method receiving as parameters

the root workflow, the list of possible actions that may be applied to it and the plan counter
i. As noted in Line 10, each such task is executed as soon as a worker becomes available.

The job of the planWorker method in Line 17 is to translate the plan number to an actual

plan signature using the change base and the translation process into vertex vectors as

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

75

previously described in this section. Then, having the root workflow and the i-th candidate
physical workflow, the function initially distinguishes which actions need to be applied in
order to make the transition from the root to the i-th plan (Lines 21-23). Having done that,
Lines 25-28 compute the plan cost and update, if needed, the global best plan and the
accompanying, minimum so far, cost.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Algorithm: ESC

Input: <Graph> workflow, <List> actions, <int> k

Output: Optimal plan

minPlan ← workflow;

minCost ← workflow.cost;

start a pool WP with k workers;

#plans ← (#platforms * #sites) ^ #vertices;

for (int i; i < #plans; i++) {

 w ← planWorker(workflow, actions, i);

 WP.execute(w); // runs once there is an available worker

}

terminate WP;

return minPlan;

Algorithm: planWorker

Input: <Graph> workflow, <List> actions, <int> i

Output: updates global variables minPlan, minCost

action[] n ← map i into actions; // n contains vertex placements ordered by vertex position

g ← workflow // work on a copy of flow

int c ← 0;

for <Vertex> v in g {

action a ← n[c++]; // get action at position c, which corresponds to the c-st vertex in g

apply a on v; // e.g., change v placement (site/execution option)

update v dependencies; // modify v instances in all v’.adjVertices for {v’∊g’,s.t. V’≠v}

// compute new workflow cost (each action results into a new plan)

c ← g.computeCost();

if (c < minCost) {

 minCost = c;

 minPlan = g;

}

}

Algorithm 2: CREXDATA Exhaustive Search Algorithm Pseudocode

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

76

5.3.2 Greedy Search (GSP) Algorithm

The Greedy Search Algorithm (GSP) of CREXDATA’s algorithmic suite operates in steps
(hops starting from the root plan on the GoG) aiming at finding progressive global optima at
each step. In other words, GSP creates the GoG by following a greedy plan enumeration
with progressive global optima. At each step, the algorithm progresses with the best (i.e.,
cheapest) single action across the entire workflow and repeats until all assignments are
completed. The process is as follows:

1. Start with a workflow (initially the root one)
2. Find the action (one hop neighbour) that produces the lowest physical workflow cost
3. Update the workflow graph with the action
4. Repeat starting from the best plan found so far

The process is detailed in Algorithm . For better illustration we will describe the rationale of
the algorithm using its visual representation in Figure 41.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Algorithm: GSP

Input: <Graph> workflow, <List> actions

Output: A plan with the minimum cost found

g ← workflow; // work on a copy of flow

g’ ← null; // a graph to keep an intermediate state

minV, minA ← null; //to keep vertices with minimum cost action and the action

<List> vlst ← all <Vertex> v of g;

while (vlst is not empty) {

minCost ← ∞;

g’ ← g;

// find the cheapest action

for vertex v in vlst { // for each vertex

for action a in actions { //try all actions

apply a on v; // e.g., change v placement (site/execution option)

update v dependencies; // modify v instances in all v’.adjVertices for {v’∊g’,s.t. V’≠v}

c ← g.computeCost(); // compute new workflow cost

if (c < minCost) { // keeps the cheapest action and the vertex with that action

 minCost ← c;

 minV ← v;

 minA ← a;

}

}

}

// update intermediate state

g ← g’;

apply minA on minV;

update minV dependencies;

g.computeCost();

// remove the visited vertex and repeat

vlst.remove(minV);

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

77

30

31

32

33

minV, minA ← null;

}

return g;

Algorithm 3: CREXDATA Greedy Search Algorithm Pseudocode

(a)

(b)

(c)

Figure 41: Illustration of the Greedy Search Algorithm Operation

Figure 41 shows 3 iterations of the GSP algorithm. In Figure 41a, the algorithm starts from
the red, root plan and computes the costs of the one hop neighbours, yielded after applying
possible actions. Out of the examined plans, the light blue-coloured one is the current global
optimum. Therefore, the algorithm uses this plan and repeats the process by examining the
actions and computing the costs of its one hop neighbours. In Figure 41b, out of the two
possible actions, the newly light blue-coloured one is the new global optimum. In the third
iteration of the algorithm, the one hop neighbours of the latter plan are examined. In Figure
41c we observe that only a single one hop neighbour exists and gives a new global optimum
and so on.

The greedy solution is suboptimal, as the decision at each step does not consider the long-
term value of its action, but it is extremely fast requiring minimal execution time. This is
important in highly volatile settings where network devices enter or leave frequently, as well
as when stream statistical properties often change. If in such settings the optimization
algorithm needs a considerable amount of time to return a preferable physical plan, its
suggestion may be outdated by the time it is returned. GSP’s speed gracefully handles such
situations. GSP can be parallelized either at the vertex or the action level, but our
experimental results show that this is not necessary as its execution time is minimal even for
large scale networks.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

78

5.3.3 Random Sampling Search (RSS) Algorithm

The RSS algorithm computes a random sample of the possible physical plans and returns
the best solution amongst them. The algorithm builds on top of the ESC technique. Recall
that ESC creates the plan space by enumerating all possible states using counting and
number base switch. Instead of enumerating all possible plans (and thus finding an optimal
solution), RSS instantiates a sample of them. An exemplary illustration is provided in Figure
42.

Figure 42: Illustration of the Random Sampling Search Algorithm Operation

Algorithm 4 outlines RSS operation. RSS uses the same planWorker method as ESC does

(Line 15), but it instantiates it only for the sampled physical plans (Lines 11-13) The solution
returned is suboptimal, as the random selection of plans does not guarantee finding the
optimal plan.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Algorithm: RSS

Input: <Graph> flow, <List> actions, int sampleSize

Output: A plan with the minimum cost found

minPlan ← flow;

minCost ← flow.cost;

#plans ← (#platforms * #sites) ^ #vertices;

if (sampleSize >= #plans) sampleSize = #plans; // if the plan space is small do ESC

<List> sample ← get sampleSize unique numbers in [0,#plans);

for int i in sample {

// work similarly to ESC

planWorker(flow, actions, i);

}

Algorithm 4: CREXDATA Random Search Sampling Algorithm Pseudocode

The advantage of RSS over GSP is that it cannot be trapped to local optima (global optima
per step as computed by GSP). Furthermore, the execution time of the algorithm is in direct
relation to the chosen sample size. Therefore, depending on the volatility of the optimization
setup may be a more preferable choice compared to GSP. Our experimental evaluation in

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

79

Section 5.5 provides a practical comparison of ESC, GSP, RSS in practical workflows and
small, medium, large-scale networks of devices.

Since CREXDATA may, in some cases, also need to process static data stored at a
database (for instance terrain and other information in the Weather Emergency Use case or
coastal area information in the Maritime Use Case) using used defined functions (UDFs)
expressed as a RM Studio operator, we handled such cases separately. More precisely, we
designed QFusor, an optimizer plugin for UDF queries over relational databases. QFusor
minimizes the performance overheads introduced upon using UDFs in SQL execution
environments by employing techniques such as vectorization, parallelization, tracing JIT
compilation, and operator fusion for various, commonly used and supported in RapidMiner
Studio, types of UDF also engaging relational operators. QFusor is engine-agnostic and can
work with several popular SQL databases some of which are supported by RapidMiner
Studio in the overall CREXDATA architecture.

5.4 Statistics Collection and the Need for Simulators

For our algorithms to be useful in devising a physical plan of good practical performance,
they require accurate statistics. These statistics are to be used in the computeCost function

they all incorporate. In the past, various approaches have adopted System-R like techniques
or machine learning models [100] [101] to incorporate statistics and use them to measure the
overall performance of physical workflows. Nevertheless, the setups over which CREXDATA
operates are different. The volatility of the network as well as the arbitrary size of workflows,
networks, execution options and the variety of possible operators, together with the
combinatorial optimization space, do not leave room for making the assumption that there
exist neither accurate analytic formulas nor tractably trainable machine learning models that
can capture the behaviour of combinations of operator physical implementations. Therefore,
in CREXDATA we resort to derive statistics via truthful simulators possibly complemented
with runtime statistics of the physical plans that are actually deployed.

Nonetheless, this is easier said than done. We surveyed existing simulators, based on
desired features including (a) number of citations and number of Github stars, (b) the
programmability of the simulator (the ability to actually code operators and workflows), (c)
the level of the cloud to edge continuum that can be covered by the simulator and (d) the
coverage it can provide, directly or via derived measures, to the performance criteria in
Section 5.2. The result of our survey is summarized in Table 7.

Table 7: Candidate simulators and their adoption/popularity, metrics collection,
cloud to edge continuum coverage features

Simulator Github /
Paper
Citations

Program
- mable

IoT Layers
Covered

Metrics

iFogSim [102] 175 / 1610 X Edge, Fog Cloud Execution time per
tuple, Network usage,
Energy consumption,
Cost of infrastructure

EdgeCloudSim
[103]

393 / 539 X Fog, Cloud Latency (per task)

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

80

Simulator Github /
Paper
Citations

Program
- mable

IoT Layers
Covered

Metrics

PureEdgeSim
[104]

149 / 40 X Fog, Cloud Latency (per task)

IoTNetSim [105] 0 / 28 X Edge, Fog Cloud -

IoTSim-Edge
[106]

13 / 120 X Edge, Fog Energy consumption,
latency(per event)

IoTSim-Stream
[107]

3 / 17 X Cloud
(Multicloud)

CPU, RAM usage

IoTSim [108] 0 / 255 X Edge, Cloud VM cost, execution time

Raspberry Pi

emulation13

- Y Edge -

Raspberry Pi

cluster

- Y Fog Custom metrics via
Prometheus

Based on Table 7, we resort to iFogSim (version 2) due to its popularity, layer coverage and
richness of performance metrics. Nevertheless, iFogSim is not directly usable for simulating
any valid physical plan in the scope of CREXDATA. Its limitations can be summarized as
follows: (i) communication links are not bidirectional, therefore if one operator is assigned to
a device in the fog, it cannot provide its output if the upstream operator is in the cloud, (ii) it
cannot automatically receive a physical workflow from the rest of the CREXDATA
architecture and deploy/ simulate it over a chosen network (iii) it does not provide all the
target performance measures i.e., end to end latency and throughput as well as state size
for migration cost calculation purposes are missing.

To tackle the above limitations, we significantly redesign iFogSim. As illustrated in Figure
43, iFogSim is now only a small sub-system of the CREXDATA Simulator Executor and
Statistics Collector. Our contributions are the two sub-systems surrounding iFogSim, namely
the workflow-placement-generator and ifogsim-wrapper. The workflow placement generator
is able to generate topologies and workflows according to the specifications of the
CREXDATA architecture. And then generate simulations for these workflows using the
placement generator interface. Here, we use the strategy software pattern to have different
algorithms for the placement generation. We plan to provide CREXDATA Simulator Executor
and Statistics Collector open-source as soon as this effort is completed.

13 M. Stawiski, “Emulating a raspberry pi in qemu,” https://interrupt.memfault.com/blog/emulating-
raspberry-pi-in-qemu , June 2023.

https://interrupt.memfault.com/blog/emulating-raspberry-pi-in-qemu
https://interrupt.memfault.com/blog/emulating-raspberry-pi-in-qemu

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

81

Figure 43: CREXDATA Simulator Executor and Statistics Collector significantly
extending iFogSim

Finally, because, in principle, there are categories of operators that are only deployable on
the cloud, such as heavy-duty machine or deep learning operators and these operators
introduce parallelization and CPU-GPU related execution trade-offs, we studied the
statistical features and statistical properties that affect these categories of operators
separately from the core operators of CREXDATA. In particular in [97] we statistically
analyse the key factors affecting the execution performance of task(operator)-based
workflows on a High Performance Computing (HPC) infrastructures composed of
heterogeneous CPU-GPU clusters. Several results on interrelated factors regarding the
execution options (physical execution implementation) of the task algorithm, dataset,
devoted resources, and system utilization employed are revealed. We consider this statistics
collection and analysis methodology as the first step towards an automated method to
optimize task-based workflows in modern, high-compute capacity, CPU-GPU engines.

5.5 Experimentation

We measure the performance of ESC, GSP and RSS algorithms over a wide variety of
network settings, from small (10s of sites) to medium (100s of devices) and large (1000s of
devices) scale networks, using the TRAIN workflow from the well-known, highly cited RIoT

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

82

benchmark [109], illustrated in Figure 44. Please refer to [109] for further details on the
utilized operators. Our experiments were run on a server with (a) 2 Intel Xeon Silver 4310
processors with 12 cores and 24 threads each, (b) Four 64GB RAMs RDIMM 3200MT/s
each, (c) One ROM 960GB SSD vSAS with read-intensive 12Gbps.

Figure 44: TRAIN workflow used in our experimental evaluation14

Figure 45a and Figure 45b provide a comparative analysis of the involved algorithms
regarding their execution time and the goodness of the output physical plan, respectively.
ESC and RSS were capped at 100 and 10 seconds, correspondingly. This means that if they
have not output a physical plan by examining the entire search space by 100 or 10 seconds,
respectively, they are enforced to output the best plan found so far. GSP has no such
restriction since its execution time is always in the order of a few seconds. For reasons
explained in Figure 45c, the parallelism of ESC is set to 10. Remarkably, RSS and GSP
currently run with a parallelism of 1 since we want to also judge whether they are worthwhile
to parallelize based on their execution time and goodness of provided solutions. As Figure
45a and Figure 45b demonstrate, for an order of magnitude reduction in execution time
(either due to the cap or without it) in Figure 45a, RSS approaches the goodness of ESC
output physical plan, providing near optimal solutions. On the other hand, GSP is two to
three orders of magnitude faster than RSS and GSP, correspondingly, but with a
considerably suboptimal solution each time.

Turning our attention to Figure 45c, we observe that the parallelism of ESC reaches the
maximum number of examined physical plans and, thus, the portion of the entire search
space that is inspected by the algorithm, when the parallelism is set to 10. This is because
for more threads the benefits of examining multiple physical plans in parallel is outweighed
by computational, thread synchronization barriers and locks on atomic variables. Therefore,
in Figure 45a,b parallelism is set to 10.

Another subtle algorithmic parameter for ESC is the size of queue size that will be used for
enqueueing candidate physical plans for the various workers to dequeue and examine their
performance. We experimented with different queue sizes ranging between 100*parallelism,
1000*parallelism to 10000*parallelism. According to the plot of Figure 45d, the lowest
execution time is incurred for queue size of 1000*parallelism. This is because for
100*parallelism the queue is often left empty while, for 10000*parallelism, the execution time
is negatively affected by memory to CPU communication lags.

14 https://github.com/dream-lab/riot-bench

https://github.com/dream-lab/riot-bench

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

83

(a)

(b)

(c)

(d)

(e)

Figure 45: Scalability Analysis and Parameter Tuning for the CREXDATA Algorithmic
Suite (ESC, RSS, GSP Algorithms)

Finally, we examine the potential benefit of parallelism for the RSS and GSP algorithms,
which are currently both single threaded. As shown in Figure 45a, the execution time of GSP
is not severely affected by increasing the network size. In the figure, we have an order of
magnitude increase in execution time for three orders of magnitude increase in network size
for GSP. On the other hand, Figure 45e shows the execution time of RSS for sample sizes
of 1-4% for a search space composed of 158 physical plans (for a network of 15 devices and
the workflow of Figure 44 which is composed of 8 operators). As plotted in the graph, the
execution time of RSS exhibits a linear trend with the increase of the sampled search space.
Consequently, parallelization plays an important role in the execution time of the algorithm
over networks composed of 100s or 1000s of devices. Additionally, we expect that GSP will
be worthwhile to parallelize for some workflows within the scope of CREXDATA which will
be expectedly composed of more operators and higher branching factor in its operators.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

84

6 Text mining for Event Extraction

In this section we describe the text mining modules developed within the context of Task 4.5.
In essence, we are describing the algorithms and language models behind these modules
which have been developed to create a social media toolkit for real-time information
extraction from multilingual text messages on social networks to support civil protection
authorities in the face of weather-induced emergencies.

Decision making and planning during weather emergency situations require authorities to
study environmental conditions from different sources. This could include meteorological
data, weather nowcasts, environmental sensors such as hydrological and forest fire
emission sensors, and autonomous devices (e.g. drones or robots). While these sources
offer valuable perspectives, obtaining real-time information from individuals directly involved
in the emergency can improve response strategies. This information can be obtained from
geolocated-social media posts published by local government agencies, first responders,
bystanders, and affected persons sharing updates and alerts on the developing event.

Acquiring and mining useful information about emerging events from social media poses
several challenges, including volume of data, unstructured and ungrammatical (internet
jargon) posts, and multilinguality. Large language models (LLMs) are a suitable solution to
these challenges. Pretrained transformer-based multilingual models that utilise attention
mechanisms can be fine-tuned to capture the nuances of the language used in the social
media ecosystem. By leveraging these models, we can effectively identify informative social
media posts. Subsequently, key information can be extracted from these posts for further
analysis.

The results in this section directly contribute towards the main objective (MO1.3) of
CREXDATA. Specifically, in developing a multilingual large language model (MLLM) that will
enable end users to monitor social networks for information on weather emergencies. To
achieve this, a Bidirectional Encoder Representations from Transformers (BERT) model is
fine-tuned using social media posts from real weather emergencies crawled mainly from X
(Twitter) to identify relevant posts in connection with the emergency, also detecting and
classifying the type of the event currently unfolding, specifically wildfires, and floods. The
resulting model is equipped with an interface to a streaming pipeline built with Apache Kafka,
to process social media posts in real-time after a trigger condition is met. Relevant posts are
then served to a LLM-based question-answering (QA) system specifically designed to
extract information from disaster-related text data. By enabling users to formulate focused
queries regarding the unfolding event, the system aims to extract valuable insights.

In the following subsections, we provide detailed descriptions of the BERT model used for
event type prediction and the question answering model used for information extraction.

6.1 BERT Based Event Type Classifier

As discussed previously, the main goal is to monitor social media networks to identify, track
and provide meaningful information from ongoing disasters, specifically fires and floods. To
acquire social media posts the system needs access to the Application User Interface (API)
of the end user's preferred social network. This social network should ideally be a
microblogging platform with a focus on textual posts like Twitter, Mastodon, etc. Most of

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

85

these platforms no longer provide free API access, but rather paid tiers based on the
frequency and number of downloaded posts. In choosing a social network to monitor, it is
also important to study the population of the interested area to determine their preferred
networks. For example, Twitter might be preferred in North America, while Facebook is
preferred in Germany. For experimentation and proof of concept, social media posts about
past weather emergencies from Twitter will be used to simulate real time post streaming
from a social networking site.

The first step of the system is to identify relevant posts. Relevance detection has been
researched in previous works [110], but the relevance of a text is defined differently
depending on the application. In the context of this task, a relevant post is one in which the
person is speaking about an ongoing incident and providing information that can be used to
assess the status of the event. On the other hand, posts that are not relevant may include
sympathy, donation efforts, political discussions, or even conspiracy theories. After
relevance detection, the next step is to classify the event type, which consists in analysing
what type of incident the post is referring to (e.g. flood, fire). We explored the combination of
both steps, into one text classification model which classifies posts as referring to a flood,
fire, and none, where “none” refers to posts that are not relevant.

Figure 46: Architecture

6.1.1 System architecture

In Figure 46, we show the overall system architecture. Once a trigger condition for a specific
weather emergency is met, social media posts are collected from affected geographic areas.
The streams of posts collected from those areas are then classified by event type using our
fine-tuned event type classifier. The collected relevant posts may then be queried by the

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

86

question answering model in order to generate a summary of the event and retrieve posts
that answer specific questions for the end user.

Model

Our first approach to the event classification process was to have two models: one that
predicted relevancy and another that predicted event type. The idea was to use a lightweight
model to quickly discard the non-relevant posts (the majority) and one bigger model that
receives relevant posts and classifies them according to which event they are referring to.
After some experimentation, we discovered that we could use the same lightweight model
to select relevant posts and classify event types simultaneously. Combining both tasks into
one model is more time-efficient and produces good results.

The architecture of this model is based on mBERT, which is a BERT model trained using
multilingual general-purpose text. BERT is a language model with ~100 million parameters
that has been trained to predict missing tokens and on next sentence prediction [111]. It was
introduced in 2018 and improved the state of the art in many natural language-based tasks.
This pretrained model is usually further fine-tuned with task-specific data for other tasks such
as text classification. This fine-tuning usually consists of training both the pretrained model
and an additional classification head.

Train Data

The challenge with training text classification models is building an annotated dataset for the
specific task, which is even more challenging when tackling multilinguality. We aim to cover
as many languages as possible, although the number of languages supported is dependent
on acquiring data related to fires and floods in the target languages. The currently focused
languages are English, German, Spanish and Catalan. Our initial training dataset includes
publicly available datasets from previous research on weather disasters detailed in D2.1.
These datasets were mostly annotated for relevance to an event but not for event type
classification. We convert this annotation by considering all relevant posts under a particular
event as the type of that event (flood, or fire). Since most of these datasets are in English,
we required more multilingual data. The following are some strategies we explored to acquire
more data for the other languages.

Data Generation

We explored generating synthetic datasets by prompting generative LLMs. This solution has
been explored for different purposes including training neural machine translation models.
In our experiments. we used Mistral Ai’s 7 billion parameter model [112]. The model was
provided with common keywords related to weather emergencies, and prompted to generate
texts that resemble social media posts talking about those emergencies. We also tested
providing some few shot post samples to the model. The resulting generated posts were
very repetitive and lacking in ingenuity. We decided not to pursue generation as it could bias
our model and reduce accuracy when combined with real data.

Data auto-annotation

Like in data generation, we explored the use of a generative LLM for zero shot text
classification to auto-annotate social media posts for fine tuning. It has been shown that
pretrained LLMs that have been instruction tuned (i.e. fine-tuned to respond to NLP
instructions) perform reasonably for zero shot text classification which makes them useful
for automatic data annotation [113]. We experimented using Mistral Ai’s 7 billion parameter

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

87

model for this purpose. The annotations produced by mistral 7B where comparable to
annotations made by human annotators with above 80% accuracy. This method will be used
to annotate more languages instead of manual annotations when necessary.

Data Translation

A common practice for dealing with data scarcity in multilingual tasks is generating synthetic
data by using machine translation on an existing corpus in a different language. Datasets in
a source language, most commonly in English, can be translated using neural machine
translation (NMT) models into the other target languages. We have used this method to
create synthetic datasets in German, Spanish, and Catalan. The data we had in English was
translated to German15, Spanish16 and Catalan17 using state of the art open-source machine
translation models. Because these datasets are not real-world datasets, we are manually
annotating test datasets to evaluate the performance of models fine-tuned on the
combination of real and synthetic data.

Fine-tuning

In state-of-the-art language modelling for natural language processing, models are
pretrained on large datasets of general-purpose text, such as newspaper articles, Wikipedia
articles, etc. which allows them to learn the semantics of natural language and embed
general knowledge. This pretraining is very computationally expensive and time consuming.
Once a model has been pretrained, it can be further trained (fine-tuning) for a specific NLP
task by using smaller task specific datasets.

In text classification, the common fine-tuning process usually involves training the pretrained
model and the classification head simultaneously. This is the fine-tuning technique we are
reporting on in the results section. There are other approaches that aim at reducing training
time, such as freezing the layers of the pretrained model and just fine-tuning the classification
head, or more sophisticated approaches such as LoRA [114], which aims to fine-tune a small
set of the total parameters while not losing too much performance in the process. We
explored layer freezing and LoRA and found LoRA to produce slightly worse results than
common finetuning but with a 16% decrease in training time, while layer freezing produce
significantly worse results without much decrease in training time in comparison to LoRA as
shown in Table 8. All models were fine-tuned on high performance computing nodes with 4x
NVIDIA Hopper H100 64GB GPUs and 2x Intel Xeon Platinum 8460Y 2.3GHz CPUs.

15 https://huggingface.co/Helsinki-NLP/opus-mt-en-de
16 https://huggingface.co/Helsinki-NLP/opus-mt-en-es
17 https://huggingface.co/projecte-aina/aina-translator-ca-en

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

88

Table 8: Finetuning methods comparisons. The best performing result is indicated in
bold. The second best is underlined for comparison

Architecture

Precision Recall F1

Accuracy
Training

time
(minutes)

Fire Flood None Fire Flood None Fire Flood None

mBERT
(common)

0.947 0.956 0.99 0.958 0.96 0.976 0.953 0.958 0.983 0.965 16.73

mBERT
(LoRA)

0.968 0.939 0.929 0.965 0.938 0.933 0.966 0.938 0.931 0.946 14.03

mBERT
(frozen)

0.539 0.658 0.66 0.819 0.282 0.703 0.65 0.395 0.681 0.597 13.85

Test Data

A percentage of our dataset which includes public datasets (mostly in English), and synthetic
datasets (translated data) was reserved for testing and evaluation purposes. This test
dataset was composed of about 30% of the dataset and was shuffled during every training
process. It also consisted of mostly real datasets. Although this practice has yielded good
results in the event type classification, we are working on human annotation of real data that
will be used solely for testing, which will produce more reliable results. To ease the process
of manual annotation, we are using the current best iteration of our event type classifier, to
detect posts that are not relevant to a weather emergency, then only manually annotating
those which are relevant to the event.

6.1.2 Results

For experimentation, we considered mBERT18 (BERT architecture), XLM-R19 (Roberta
architecture with CommonCrawl20 dataset), and TwHIN21 (trained on social media
messages) base models, and XLM-T22 fine-tuned on XLM-R base model with social media
messages for sentiment analysis. Our focus is mBERT, but we include the other models
because they alter the training process and/or modifying the source of the data used for
training. For comparison, we use the precision, recall, f1 and accuracy metrics that are
standard for text classification evaluation.

In Table 9, we made a comparison of all the base models without fine-tuning and mBERT
fine-tuning for event type prediction. Naturally, the base models perform poorly because they
haven’t been trained for the task, with the TwHIN exception with an above average accuracy.
This because TwHIN has been pretrained on social media messages and has gained
knowledge on social media. The table also shows that the mean latency when using the
models for classification is negligible even after fine-tuning. It is important to note that these

18 https://huggingface.co/google-bert/bert-base-multilingual-cased
19 https://huggingface.co/docs/transformers/en/model_doc/xlm-roberta
20 https://commoncrawl.org/
21 https://huggingface.co/Twitter/twhin-bert-base
22 https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment

https://huggingface.co/docs/transformers/en/model_doc/xlm-roberta

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

89

latency results are from a high-performance computing node with GPUs, as such they are
better than they would be in lesser resource applications.

Table 9: Comparison of base models with a finetuned model. The best performing
result is indicated in bold. The second best is underlined for comparison

Model name Precision Recall F1 Accuracy
Mean
latency

mBERT 0.3461 0.3323 0.0489 0.0534 0.0135

XLM-R 0.3900 0.3333 0.0969 0.1701 0.0133

XLM-T 0.3081 0.3239 0.0856 0.1157 0.0133

TwHIN 0.4014 0.3739 0.3414 0.5488 0.0155

mBERT (Fine-tuned) 0.8800 0.9651 0.9180 0.9504 0.0136

Next in Table 10, we show a comparison of the base models all fine-tuned with a dataset
balanced according to classes (“flood”, “fire”, and “none”). The dataset is balanced to reduce
bias to certain classes. The train set includes approximately 2500 social media messages in
four different languages, German (DE), Spanish (ES), Catalan (CA), and English (EN), while
the test set includes approximately 1200 messages in the same languages.

The fine-tuned based models all have above 90% performance in all language and class
precision with negligible differences. The differences lie in the precision of the fire and flood
classes between models pretrained with general-purpose text (mBERT, XLM-R) and those
trained with Twitter data (XLM-T, TwHIN). The latter models show a precision increase for
the fire and flood classes, resulting in a higher F1 score. Our hypothesis for these results is
that XLM-T and TwHIN, having been pretrained with Twitter data, are more attuned to
informal language and social media jargon.

In terms of language, the models show comparably a slightly better performance in English,
probably because English being the dominating language on internet, these models are
pretrained on more English samples than other languages.

6.2 Question Answering for Event Information Extraction

During disasters, a critical need arises for timely and accurate information. Emergency
responders, policymakers, and the general public all rely heavily on this information to guide
their actions. However, the event of a disaster often brings a vast amount of text data (e.g.
news reports, social media updates, etc.) creating a complex information landscape. Sifting
through this overwhelming volume of data to find specific, important details can be a
challenging task, hindering effective response and recovery efforts.

To address this challenge, we propose a novel Question Answering (QA) method. Our
system aims to extract crucial information from disaster-related text data by enabling users
to ask focused questions about the unfolding event. By providing clear and concise answers,

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

90

the QA system could serve as a powerful tool to improve information access and
communication during critical times, empowering informed decision-making.

Table 10: Comparison of base models fine-tuned for event type prediction

Architecture Language
Precision Recall F1

Accuracy
Fire Flood None Fire Flood None Fire Flood None

mBERT

DE 0.955 0.942 0.99 0.941 0.966 0.977 0.948 0.954 0.983 0.962

CA 0.967 0.934 0.971 0.938 0.959 0.975 0.952 0.946 0.973 0.957

ES 0.964 0.929 0.981 0.928 0.97 0.977 0.945 0.949 0.979 0.958

EN 0.947 0.956 0.99 0.958 0.96 0.976 0.953 0.958 0.983 0.965

XLM-R

DE 0.971 0.941 0.957 0.977 0.963 0.926 0.974 0.952 0.941 0.957

CA 0.96 0.941 0.961 0.976 0.953 0.934 0.968 0.947 0.948 0.954

ES 0.97 0.931 0.958 0.976 0.962 0.924 0.973 0.947 0.941 0.953

EN 0.975 0.948 0.958 0.974 0.965 0.941 0.974 0.956 0.949 0.96

XLM-T

DE 0.965 0.961 0.958 0.992 0.953 0.936 0.978 0.957 0.947 0.962

CA 0.947 0.969 0.959 0.988 0.941 0.947 0.967 0.955 0.953 0.958

ES 0.963 0.953 0.956 0.986 0.954 0.935 0.974 0.953 0.946 0.958

EN 0.971 0.965 0.948 0.981 0.953 0.95 0.976 0.959 0.949 0.962

TwHIN-BERT

DE 0.978 0.953 0.953 0.985 0.958 0.94 0.981 0.955 0.947 0.962

CA 0.957 0.962 0.958 0.985 0.942 0.95 0.97 0.952 0.954 0.959

ES 0.979 0.948 0.958 0.983 0.958 0.944 0.981 0.953 0.951 0.961

EN 0.977 0.962 0.958 0.984 0.959 0.953 0.98 0.96 0.956 0.966

6.2.1 Methodology

With the rise of Large Language Models (LLMs), a great amount of research focused on how
to leverage LLMs for information retrieval tasks, such as zero-shot retrieval. Early methods
compared each query-document pair with a score, picking the highest-scoring ones.
Researchers have improved these methods by adding more context, using LLMs to generate
extra queries, summaries, or relevant details. This enrichment significantly boosted retrieval
performance, especially for unseen (zero-shot) queries.

Typically, retrieval systems embed queries and documents in a shared space for efficient
searching. While recent methods leverage LLMs to enrich retrieval in various ways, the
ability to improve the results of the retriever, based on the re-ranking stage remains limited.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

91

Additionally, LLMs can generate inaccurate content, and their performance can be affected
by factors like prompt order.

To address these issues, some studies [115] [116] propose using LLMs as relevance
assessors, providing individual assessments for each query-document pair. These
approaches aim to enhance trustworthiness by leveraging the LLM's strengths in
understanding nuances and identifying potentially irrelevant content.

However, most existing methods treat retrieval and relevance assessment as separate
tasks, missing potential benefits from combining them. Our approach bridges this gap by
merging individual rankings from separate retrieval and relevance assessment stages using
rank aggregation techniques. This allows our method to exploit the strengths of both stages,
leading to a more accurate final ranking of retrieved documents.

Figure 47 The system architecture of the QA model

System Architecture

In Figure 47, we present the proposed approach, which consists of three main steps. Initially,
the retriever leverages LLM-generated query-relevant passages to identify candidate
documents from the corpus. Subsequently, the retrieved documents undergo an LLM-based
relevance assessment, where only documents deemed relevant by the LLM progress to the
next stage. Then, for each document, a separate ranking is produced. Finally, a rank
aggregation technique merges individual rankings leading to a more accurate final ranking.
Notably, our approach relies on LLM inference for both retrieval and relevance assessment,
without the need for separate training steps. Below, we describe each step in detail.

Passage Generation

Building upon prior work [117] that highlights the advantages of enriched query and
document representations, our method focuses on expanding the query beyond its original
form by incorporating additional context. This is achieved by instructing a LLM to generate a

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

92

set (denoted N) of informative passages that capture the underlying intent and context of the
user's query.

Similar to the approach [117], we then encode these generated passages using a pretrained
encoder to obtain a dense vector representation for the enhanced query. This representation
is calculated by averaging the encoded vectors of each individual passage within the set N.
By aggregating the representations of the generated passages, we can obtain a more
comprehensive query representation for the retrieval process. This enriched representation
is used as the query in order to retrieve the k most relevant documents from the collection.

Relevance Assessment

Following recent work [115] that explores the potential of LLMs in improving retrieval quality
through relevance assessments, we introduce a straightforward LLM-based relevance
assessment mechanism.

Given the initial document ranking, we aim to select a subset of documents while preserving
their relative order. However, our primary objective is to guarantee that documents
containing the correct answer are included and prioritized within this filtered set. To achieve
this, we use a LLM to generate a binary relevance judgment ("yes" or "no") for each
document. In simpler terms, for a given query, we instruct the LLM to determine if each
document within the top retrieved documents can potentially provide an answer to the query.

Furthermore, the LLM generates relevance judgments sequentially, meaning each
document is assessed independently. The LLM receives the query concatenated with the
document itself as input for its judgment. Only the top-m documents with a positive ("yes")
relevance judgment progress to the next stage.

Rank Aggregation

With the help of passage generation and relevance assessment, we obtain a refined
document set, containing a selection of highly relevant documents. Our method then
performs a two-stage ranking aggregation process to improve the overall retrieval accuracy.
The first stage involves computing individual rankings for each document within the refined
set. In the second stage, we aggregate these individual rankings into a single, more robust
final ranking. In this way, we aim to improve the diversity of the rankings and reduce the
impact of documents incorrectly placed at high rank positions by an individual ranker [118].

Implementation

To promote code reproducibility and transparency, we implemented our system and the
baseline retrieval methods using PyTorch23, a popular deep learning framework. We further
used PyFlagr24, a library specifically designed for rank aggregation techniques. Furthermore,
we opted for open-source LLMs that are publicly available through Huggingface25.
Specifically, we conducted experiments using Solar26 and Mistral27. Our implementation
utilizes the pre-built BM25 and Contriever indexes from the Pyserini28 toolkit.

23 https://pytorch.org/
24 https://flagr.site/
25 https://huggingface.co/
26 https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0
27 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2
28 https://github.com/castorini/pyserini/

https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

93

Our experiments were conducted on a workstation equipped with two high-performance
Nvidia RTX A6000 GPUs, each with 48GB of memory, and a AMD Ryzen Threadripper PRO
3955WX CPU.

6.2.2 Experiments

Summarizing Crisis Events

We assessed the performance of our approach on the CrisisFACTS 2022 task29. This task
focuses on generating daily summaries for short-term crisis events by consolidating factual
information from social media and news data relevant to pre-defined queries. Given a set of
queries and documents, the objective is to return a list of k most relevant text snippets
("facts") alongside their importance scores.

The CrisisFACTS dataset provides multi-stream data with ground truth summaries sourced
from trusted sources including ICS-2009, Wikipedia, and NIST. We used Rouge-2 F1-Score
and BERT-Score metrics to evaluate the effectiveness of our approach. We compared our
method against the top-performing systems from the CrisisFACTS 2022 challenge, namely,
"unicamp" and "ohmkiz".

System configuration

Within our system configuration, Contriever was utilized for the initial document retrieval
stage. The Solar LLM was used to generate ten candidate passages per query for query
expansion. The LLM-based relevance assessment was configured to consider the top-5
candidate documents. Finally, a linear rank aggregation technique was employed to merge
the individual rankings.

Results

Our approach achieves competitive performance on the CrisisFACTS dataset, as shown in
Table 11. BERT-Score and ROUGE-F1 metrics indicate fluency and factual accuracy
comparable to the best existing methods. This strong performance is consistent across all
ground truth summaries, even surpassing all other methods in some cases.

Unlike existing methods like ohmkiz that require fine-tuning on question-document pairs or
unicamp which relies on non-public OpenAI APIs, our method operates entirely in an
unsupervised manner and uses readily available, open-source LLMs. In this way our
approach fosters broader adoption and replicability within the research community.

29 https://crisisfacts.github.io/

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

94

Table 11: Results on the CrisisFACTS 2022 dataset. The best performing result is
indicated in bold. The second-best is underlined for comparison

WIKI NIST ICS

Bert Rouge Bert Rouge Bert Rouge

unicamp 53.2 02.8 55.7 13.3 45.9 05.8

ohmkiz 56.4 03.6 56.4 14.7 45.0 05.1

HyDE 53.2 03.0 53.1 11.1 44.4 04.0

Ours 54.0 03.1 56.1 12.6 46.1 04.5

Passage Ranking

Moving beyond the disaster-related benchmarks, we also assessed the performance of our
approach in a number of different retrieval tasks. Specifically, we evaluate our method on
the TREC 2019 and 2020 [119] Deep Learning Tracks (DL19 and DL20), and five datasets
from the BEIR [120] benchmark (Covid, News, NFCorpus, Signal, and Touche). We directly
evaluated the performance of our method on the designated test sets for each dataset.
Following established evaluation practices, we report MAP, nDCG@10, Recall@10, and
Recall@100 for DL19 and DL20, while nDCG@10 is used for the BEIR datasets.

As we emphasize on zero-shot retrieval, we selected baselines that operate without labeled
data. These baselines represent distinct retrieval approaches: BM25 serves as a lexicon-
based zero-shot method, and Contriever as a dense retrieval approach. To ensure a
comprehensive evaluation, we additionally include HyDE [117], a state-of-the-art LLM-
based retrieval technique.

Results

In Table 12 we can see that our method consistently outperforms the baseline methods on
both TREC Deep Learning Tracks (DL19 and DL20) datasets. Notably, our method achieves
statistically significant improvements of 0.5 to 7.4 percentage points in MAP and nDCG@10
compared to the LLM-based competitor, HyDE. It is worth mentioning that our approach
outperforms HyDE on all metrics except Recall@10 (R@10) on DL20. These findings

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

95

highlight the effectiveness of our approach, which leverages the combined power of
relevance judgments and rank aggregation to achieve better retrieval performance.

Table 12: Results on DL19 and DL20. The best performing result is indicated in bold.
The second best is underlined for comparison

DL19 DL20

MAP nDCG@10 R@10 R@100 MAP nDCG@10 R@10 R@100

BM25 30.1 50.6 17.8 45.2 28.6 48.0 16.9 55.8

Contriever 24.0 44.5 14.1 48.9 24.0 42.1 23.1 51.4

HyDEmistral 38.2 54.8 22.5 57.4 33.0 49.5 26.8 59.6

HyDEsolar 37.4 55.4 22.3 56.9 32.7 52.8 30.2 62.3

Ours(BM25)mistral 38.4 60.4 23.5 55.4 32.4 52.1 26.5 60.9

Ours(BM25)solar 35.5 57.2 20.3 55.9 34.2 52.0 26.9 62.3

Ours(CR)mistral 39.1 56.6 22.7 57.5 33.8 51.5 29.7 60.4

Ours(CR)solar 42.3 62.8 25.4 58.5 34.7 53.3 28.5 61.4

Similar behaviour is observed on the BEIR benchmark datasets in Table 13. When combined
with either BM25 or Contriever for initial retrieval, our approach consistently surpasses all
other methods across all five datasets. While HyDE occasionally exhibits comparable
performance, particularly on the NFCorpus dataset, it often falls behind our method by a
significant margin.

Comparing the results of combining our approach with different retrievers, it seems that
BM25 leads more consistently to good results. Employing Contriever performs very well in
some datasets, but not so well in others.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

96

Table 13: Results on BEIR. Best performing is marked bold. The second-best is
underlined for comparison

(nDCG@10) Covid News NFCorpus Signal Touche

BM25 59.4 39.5 30.7 33.0 44.2

Contriever 27.3 34.8 31.7 23.3 16.6

HyDEmistral 55.9 34.3 30.8 21.6 14.9

HyDEsolar 56.7 35.1 31.3 21.5 15.0

Ours(BM25)mistral 61.2 40.9 31.5 33.4 44.7

Ours(BM25)solar 61.5 41.2 32.3 33.6 45.4

Ours(CR)mistral 58.4 40.7 26.7 17.9 18.3

Ours(CR)solar 63.4 41.4 31.9 18.1 18.9

Furthermore, our experiments revealed that Solar exhibited marginally superior overall
performance compared to Mistral. This difference could be attributed to the model size, with
Solar consisting of 10 billion parameters compared to Mistral's 7 billion.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

97

7 Progress achieved towards the CREXDATA objectives

This deliverable documented the progress of CREXDATA Work Package 4 for the first half
of the project. Work Package 4 focuses on advanced learning and forecasting methods that
can be executed at scale. The first task of the Work Package (T4.1) is to develop forecasting
techniques that cover longer horizons and reach deeper into the future. Towards this end,
we presented an expressive forecasting engine and an (online) optimization method for this
engine which can help in determining the proper configuration settings. This will enable us
to optimize the engine for deeper horizons. We also presented initial forecasting results for
the maritime use case. The goal of the second task (T4.2) is to develop algorithms for guiding
large-scale simulations towards desired ends. We presented the simulation scenarios from
all three CREXDATA use-cases and a discussion of the methods to be applied for
interactively exploring the parameter space of the CREXDATA simulators. Another goal of
Work Package 4 is to develop bandwidth-efficient algorithms for federated learning (T4.3).
We presented a novel bandwidth-efficient technique for Federated Deep Learning and
demonstrated its advantage over previous solutions, as well as its applicability in computer
vision, which is of crucial importance for the weather emergency use case. CREXDATA also
needs to build a scalable, high-throughput service for the optimized execution of distributed
data analytics over the cloud. This is the work of T4.4. We presented an approach which
optimizes the execution of arbitrarily many workflows over arbitrarily many devices, under
arbitrarily many physical execution options in volatile streaming and network settings. The
final task of Work Package 4 (T4.5) is to build a robust multi-lingual system that will be able
to support decision making by extracting information from multiple social media. We
presented language models developed for monitoring and extracting key information about
weather emergencies from social media messages.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

98

8 Acronyms and Abbreviations

Each term should be bulleted with a definition.

Below is an initial list that should be adapted to the given deliverable.

- BO – Bayesian Optimization
- CA – Consortium Agreement
- CEF – Complex Event Forecasting
- CEP – Complex Event Processing
- CER – Complex Event Recognition
- D – deliverable
- DoA – Description of Action (Annex 1 of the Grant Agreement)
- EB – Executive Board
- EC – European Commission
- ESC - Exhaustive Search with Counting
- GA – General Assembly / Grant Agreement
- GoG - Graph of Graphs
- GSP - Greedy Search Progressive
- HPC - High Performance Computing
- MCC – Mathews Correlation Coefficient
- RSS - Random Sampling Search
- SREMO – Symbolic Register Expression with Memory and Output
- SRT – Symbolic Register Transducer
- UDF - User Defined Function
- WP – Work Package
- WPL – Work Package Leader

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

99

9 References

[1] E. Alevizos, A. Artikis and G. Paliouras, “Wayeb: a Tool for Complex Event
Forecasting,” in LPAR, 2018.

[2] E. Alevizos, A. Artikis and G. Paliouras, “Complex event forecasting with prediction
suffix trees,” VLDB J., vol. 31, pp. 157-180, 2022.

[3] G. Fikioris, K. Patroumpas, A. Artikis, G. Paliouras and M. Pitsikalis, “Fine-Tuned
Compressed Representations of Vessel Trajectories,” in CIKM '20: The 29th ACM
International Conference on Information and Knowledge Management, Virtual Event,
Ireland, October 19-23, 2020, 2020.

[4] S. Pandey, S. Nepal and S. Chen, “A test-bed for the evaluation of business process
prediction techniques,” in CollaborateCom, 2011.

[5] V. Muthusamy, H. Liu and H.-A. Jacobsen, “Predictive publish/subscribe matching,”
in DEBS, 2010.

[6] V. Stavropoulos, E. Alevizos, N. Giatrakos and A. Artikis, “Optimizing complex event
forecasting,” in Proceedings of the 16th ACM International Conference on Distributed
and Event-Based Systems, New York, NY, USA, 2022.

[7] “Apache Kafka v. 3.3,” [Online]. Available: https://kafka.apache.org/.

[8] A. Povzner, P. Mahajan, J. Gustafson, J. Rao, I. Juma, F. Min, S. Sridharan, N. Bhatia,
G. K. Attaluri, A. Chandra, S. Kozlovski, R. Sivaram, L. Bradstreet, B. Barrett, D. Shah,
D. Jacot, D. Arthur, M. Chawla, R. Dagostino, C. Mccabe, M. R. Obili, K. Prakasam,
J. G. Sancio, V. Singh, A. Nikhil and K. Gupta, “Kora: A Cloud-Native Event Streaming
Platform for Kafka,” Proc. VLDB Endow., vol. 16, p. 3822–3834, 2023.

[9] J. Kreps, N. Narkhede, J. Rao and others, “Kafka: A distributed messaging system for
log processing,” in Proceedings of the NetDB, 2011.

[10] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis and M. N. Garofalakis, “Complex
event recognition in the Big Data era: a survey,” VLDB J., vol. 29, pp. 313-352, 2020.

[11] D. Ron, Y. Singer and N. Tishby, “The Power of Amnesia: Learning Probabilistic
Automata with Variable Memory Length,” Machine Learning, vol. 25, p. 117–149,
1996.

[12] D. Ron, Y. Singer and N. Tishby, “The Power of Amnesia,” in NIPS, 1993.

[13] E. Brochu, V. M. Cora and N. de Freitas, A Tutorial on Bayesian Optimization of
Expensive Cost Functions, with Application to Active User Modeling and Hierarchical
Reinforcement Learning, 2010.

[14] P. I. Frazier, A Tutorial on Bayesian Optimization, 2018.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

100

[15] C. Ray, R. Dréo, E. Camossi, A.-L. Jousselme and C. Iphar, “Heterogeneous
integrated dataset for Maritime Intelligence, surveillance, and reconnaissance,” Data
in Brief, vol. 25, p. 104141, 2019.

[16] T. Head, M. Kumar, H. Nahrstaedt, G. Louppe and I. Shcherbatyi, scikit-
optimize/scikit-optimize, Zenodo, 2021.

[17] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma and W. M. White,
“Cayuga: A General Purpose Event Monitoring System,” in CIDR, 2007.

[18] J. Agrawal, Y. Diao, D. Gyllstrom and N. Immerman, “Efficient pattern matching over
event streams,” in SIGMOD Conference, 2008.

[19] G. Cugola and A. Margara, “Processing flows of information: From data stream to
complex event processing,” ACM Comput. Surv., vol. 44, pp. 15:1--15:62, 2012.

[20] M. Kaminski and N. Francez, “Finite-Memory Automata,” Theor. Comput. Sci., vol.
134, pp. 329-363, 1994.

[21] L. DÁntoni and M. Veanes, “The Power of Symbolic Automata and Transducers,” in
CAV (1), 2017.

[22] A. Grez, C. Riveros and M. Ugarte, “A Formal Framework for Complex Event
Processing,” in ICDT, 2019.

[23] L. Libkin, T. Tan and D. Vrgoc, “Regular expressions for data words,” J. Comput. Syst.
Sci., vol. 81, pp. 1278-1297, 2015.

[24] M. Bucchi, A. Grez, A. Quintana, C. Riveros and S. Vansummeren, “CORE: a
COmplex event Recognition Engine,” Proc. VLDB Endow., vol. 15, pp. 1951-1964,
2022.

[25] “SASE Open Source System,” [Online]. Available: https://github.com/haopeng/sase.

[26] “Esper,” [Online]. Available: https://www.espertech.com/esper/.

[27] “FlinkCEP - Complex event processing for Flink,” [Online]. Available:
https://nightlies.apache.org/flink/flink-docs-release-1.17/docs/libs/cep/.

[28] M. Pitsikalis, A. Artikis, R. Dreo, C. Ray, E. Camossi and A.-L. Jousselme, “Composite
Event Recognition for Maritime Monitoring,” in DEBS, 2019.

[29] M. Körber, N. Glombiewski, A. Morgen and B. Seeger, “TPStream: low-latency and
high-throughput temporal pattern matching on event streams,” Distributed Parallel
Databases, vol. 39, pp. 361-412, 2021.

[30] A. Awad, R. Tommasini, S. Langhi, M. Kamel, E. D. Valle and S. Sakr, “D^2IA: User-
defined interval analytics on distributed streams,” Inf. Syst., vol. 104, p. 101679, 2022.

[31] J. F. Allen, “Towards a General Theory of Action and Time,” Artif. Intell., vol. 23, pp.
123-154, 1984.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

101

[32] R. A. Kowalski and M. J. Sergot, “A Logic-based Calculus of Events,” New Gener.
Comput., vol. 4, pp. 67-95, 1986.

[33] A. Artikis, M. J. Sergot and G. Paliouras, “An Event Calculus for Event Recognition,”
IEEE Trans. Knowl. Data Eng., vol. 27, pp. 895-908, 2015.

[34] P. Mantenoglou, D. Kelesis and A. Artikis, “Complex Event Recognition with Allen
Relations,” in KR, 2023.

[35] G. Grigoropoulos, G. Spiliopoulos, I. Chamatidis, M. Kaliorakis, A. Troupiotis-
Kapeliaris, M. Vodas, E. Filippou, E. Chondrodima, N. Pelekis, Y. Theodoridis, D.
Zissis and K. Bereta, “A Scalable System for Maritime Route and Event Forecasting,”
in 27th International Conference on Extending Database Technology (EDBT),
Paestum, Italy, 2024.

[36] M. Werling, J. Ziegler, S. Kammel and S. Thrun, “Optimal trajectory generation for
dynamic street scenarios in a frenét frame,” in Proceedings - IEEE International
Conference on Robotics and Automation, 2010.

[37] L. Zhao and R. Myung-Il, “COLREGs-compliant multiship collision avoidance based
on deep reinforcement learning,” Ocean Engineering, vol. 191, p. 106436, 2019.

[38] Uber Technologies, “Uber H3: Uber’s Hexagonal Hierarchical Spatial Index,” 2019.

[39] M. Ponce-de-Leon, A. Montagud, V. Noël, A. Meert, G. Pradas, E. Barillot, L. Calzone
and A. Valencia, “PhysiBoSS 2.0: a sustainable integration of stochastic Boolean and
agent-based modelling frameworks,” npj Systems Biology and Applications, p. 9:54,
2023.

[40] M. Vázquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra, R. Arís, D. Mira,
H. Calmet, F. Cucchietti, H. Owen, A. Taha, E. D. Burness, J. M. Cela and M. Valero,
“Alya: Multiphysics engineering simulation toward exascale,” Journal of
Computational Science, pp. 15-27, 2016.

[41] C. Akasiadis, M. Ponce-de-Leon, A. Montagud, E. Michelioudakis, A. Atsidakou, E.
Alevizos, A. Artikis, A. Valencia and G. Paliouras, “Parallel model exploration for
tumor treatment simulations,” Computational Intelligence, vol. 38, no. 4, pp. 1379-
1401, 2022.

[42] M. Ponce-de-Leon, A. Montagud, C. Akasiadis, J. Schreiber, T. Ntiniakou and A.
Valencia, “Optimizing Dosage-Specific Treatments in a Multi-Scale Model of a Tumor
Growth,” Frontiers in Molecular Biosciences, vol. 9, no. 2296-889X, 2022.

[43] J. Ozik, N. Collier, R. Heiland, G. An and P. Macklin, “Learning-accelerated discovery
of immune-tumour interactions,” Molecular systems design & engineering, vol. 4, no.
4, pp. 747-760, 2019.

[44] V. Stavropoulos, E. Michelioudakis, C. Akasiadis and A. Artikis, “Resource-effective
exploration of tumor treatments with multi-scale simulations,” in Proceedings of the
12th Hellenic Conference on Artificial Intelligence, Corfu, 2022.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

102

[45] C. Akasiadis, E. Kladis, P.-F. Kamberi, E. Michelioudakis, E. Alevizos and A. Artikis,
“A Framework to Evaluate Early Time-Series Classification Algorithms,” in EDBT
2024, Paestum, 2024.

[46] V. Stavropoulos, E. Alevizos, N. Giatrakos and A. Artikis, “Optimizing Complex Event
Forecasting,” in DEBS '22, Copenhagen, 2022.

[47] H. B. McMahan, E. Moore, D. Ramage and B. A. y Arcas, “Federated Learning of
Deep Networks using Model Averaging,” CoRR, vol. abs/1602.05629, 2016.

[48] T. Qin, S. R. Etesami and C. A. Uribe, “The role of local steps in local SGD,”
Optimization Methods and Software, p. 1–27, August 2023.

[49] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A.
Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S.
Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M.
Wattenberg, M. Wicke, Y. Yu and X. Zheng, TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems, 2015.

[50] S. Li, Y. Zhao, R. Varma, O. Salpekar, P. Noordhuis, T. Li, A. Paszke, J. Smith, B.
Vaughan, P. Damania and S. Chintala, “PyTorch Distributed: Experiences on
Accelerating Data Parallel Training,” CoRR, vol. abs/2006.15704, 2020.

[51] P. Moritz, R. Nishihara, I. Stoica and M. I. Jordan, SparkNet: Training Deep Networks
in Spark, 2016.

[52] D. J. Beutel, T. Topal, A. Mathur, X. Qiu, T. Parcollet and N. D. Lane, “Flower: A
Friendly Federated Learning Research Framework,” CoRR, vol. abs/2007.14390,
2020.

[53] L. G. Valiant, “A Bridging Model for Parallel Computation,” Commun. ACM, vol. 33, p.
103–111, August 1990.

[54] O. Dekel, R. Gilad-Bachrach, O. Shamir and L. Xiao, “Optimal Distributed Online
Prediction using Mini-Batches,” CoRR, vol. abs/1012.1367, 2010.

[55] M. Zinkevich, M. Weimer, L. Li and A. Smola, “Parallelized Stochastic Gradient
Descent,” in Advances in Neural Information Processing Systems, 2010.

[56] S. Shi and X. Chu, “Performance Modeling and Evaluation of Distributed Deep
Learning Frameworks on GPUs,” CoRR, vol. abs/1711.05979, 2017.

[57] Y. Lin, S. Han, H. Mao, Y. Wang and W. J. Dally, “Deep Gradient Compression:
Reducing the Communication Bandwidth for Distributed Training,” CoRR, vol.
abs/1712.01887, 2017.

[58] S. Shi, Z. Tang, X. Chu, C. Liu, W. Wang and B. Li, “A Quantitative Survey of
Communication Optimizations in Distributed Deep Learning,” IEEE Network, vol. 35,
pp. 230-237, 2021.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

103

[59] Z. Tang, S. Shi, B. Li and X. Chu, “GossipFL: A Decentralized Federated Learning
Framework With Sparsified and Adaptive Communication,” IEEE Transactions on
Parallel and Distributed Systems, vol. 34, pp. 909-922, 2023.

[60] J. Wang and G. Joshi, “Cooperative SGD: A Unified Framework for the Design and
Analysis of Local-Update SGD Algorithms,” Journal of Machine Learning Research,
vol. 22, p. 1–50, 2021.

[61] S. Reddi, Z. Charles, M. Zaheer, Z. Garrett, K. Rush, J. Konečný, S. Kumar and H. B.
McMahan, Adaptive Federated Optimization, 2021.

[62] H. Q. a. M. B. Tzu-Ming Harry Hsu, Measuring the Effects of Non-Identical Data
Distribution for Federated Visual Classification, 2019.

[63] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. a. Ranzato, A. Senior,
P. Tucker, K. Yang, Q. Le and A. Ng, “Large Scale Distributed Deep Networks,” in
Advances in Neural Information Processing Systems, 2012.

[64] W. Y. S. W. a. Z. Z. Xiang Li, Communication-Efficient Local Decentralized SGD
Methods., 2021.

[65] G. L. M. W. K. F. A.-O. B. a. P. P. Luo Mai, “KungFu: Making Training in Distributed
Machine Learning Adaptive,” 2020.

[66] I. J. Goodfellow, Y. Bengio and A. Courville, Deep Learning, Cambridge, MA: MIT
Press, 2016.

[67] G. Cormode and M. Garofalakis, “Sketching Streams through the Net: Distributed
Approximate Query Tracking,” in Proceedings of the 31st International Conference on
Very Large Data Bases, Trondheim, 2005.

[68] G. Frangias, Federated learning at TensorFlow Using the geometric approach,
Technical University of Crete, 2023.

[69] M. Theologitis, Algorithms for online federated machine learning, Technical University
of Crete, 2023.

[70] L. Deng, “The mnist database of handwritten digit images for machine learning
research,” IEEE Signal Processing Magazine, vol. 29, p. 141–142, 2012.

[71] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny Images,” p. 32–33,
2009.

[72] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278-2324, 1998.

[73] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” arXiv e-prints, p. arXiv:1409.1556, September 2014.

[74] J. D. H. S. J. K. S. S. S. M. Z. H. A. K. A. K. M. B. A. C. B. a. L. F.-F. Olga Russakovsky,
ImageNet Large Scale Visual Recognition Challenge., 2015.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

104

[75] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, Chia Laguna Resort, Sardinia, Italy, 2010.

[76] G. Huang, Z. Liu and K. Q. Weinberger, “Densely Connected Convolutional
Networks,” CoRR, vol. abs/1608.06993, 2016.

[77] F. Chollet and others, Keras, 2015.

[78] K. He, X. Zhang, S. Ren and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification,” CoRR, vol. abs/1502.01852,
2015.

[79] X. Han, Z. Zhang, N. Ding, Y. Gu, X. Liu, Y. Huo, J. Qiu, L. Zhang, W. Han, M. Huang,
Q. Jin, Y. Lan, Y. Liu, Z. Liu, Z. Lu, X. Qiu, R. Song, J. Tang, J.-R. Wen, J. Yuan, W.
X. Zhao and J. Zhu, “Pre-Trained Models: Past, Present and Future,” CoRR, vol.
abs/2106.07139, 2021.

[80] T. Ridnik, E. B. Baruch, A. Noy and L. Zelnik-Manor, “ImageNet-21K Pretraining for
the Masses,” CoRR, vol. abs/2104.10972, 2021.

[81] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M.
Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit and N. Houlsby, “An Image
is Worth 16x16 Words: Transformers for Image Recognition at Scale,” CoRR, vol.
abs/2010.11929, 2020.

[82] J. Yosinski, J. Clune, Y. Bengio and H. Lipson, “How transferable are features in deep
neural networks?,” CoRR, vol. abs/1411.1792, 2014.

[83] D. &. B. J. Kingma, Adam: A Method for Stochastic Optimization, International
Conference on Learning Representations, 2014.

[84] I. Sutskever, J. Martens, G. Dahl and G. Hinton, “On the importance of initialization
and momentum in deep learning,” in Proceedings of the 30th International Conference
on Machine Learning, Atlanta, 2013.

[85] I. L. a. F. Hutter., “Fixing Weight Decay Regularization in Adam,” 2017.

[86] H. M. C.-Y. W. C. F. T. D. a. S. X. Zhuang Liu, “A ConvNet for the 2020s,” 2022.

[87] M. L. Waskom, “seaborn: statistical data visualization,” Journal of Open Source
Software, vol. 6, p. 3021, 2021.

[88] N. C. Thompson, K. Greenewald, K. Lee and G. F. Manso, “Deep Learning's
Diminishing Returns: The Cost of Improvement is Becoming Unsustainable,” IEEE
Spectrum, vol. 58, pp. 50-55, 2021.

[89] J. L. Schönberger and J.-M. Frahm, “Structure-from-Motion Revisited,” in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[90] C. C. R. S. &. M. D. Paul-Edouard Sarlin, “From Coarse to Fine: Robust Hierarchical
Localization at Large Scale.,” 2019.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

105

[91] P. Lindenberger, P.-E. Sarlin, V. Larsson and M. Pollefeys, “Pixel-Perfect Structure-
from-Motion with Featuremetric Refinement,” CoRR, vol. abs/2108.08291, 2021.

[92] M. W. E. N. E. L. R. Y. J. W. T. K. A. A. J. S. K. A. A. M. D. &. K. A. Tancik, “Nerfstudio:
A Modular Framework for Neural Radiance Field Development.,” ACM SIGGRAPH
2023 Conference Proceedings. , 2023.

[93] N. Giatrakos, E. Alevizos, A. Deligiannakis, R. Klinkenberg and A. Artikis, “Proactive
Streaming Analytics at Scale: A Journey from the State-of-the-art to a Production
Platform,” in Proceedings of the 32nd ACM International Conference on Information
and Knowledge Management, 2023.

[94] N. Giatrakos, A. Deligiannakis, M. Garofalakis and Y. Kotidis, “Omnibus outlier
detection in sensor networks using windowed locality sensitive hashing,” Future
Generation Computer Systems, vol. 110, pp. 587-609, 2020.

[95] M. Tzortzi, C. Kleitsikas, A. Politis, S. Niarchos, K. Doka and N. Koziris, “Planning
Workflow Executions over the Edge-to-Cloud Continuum,” in International
Symposium on Algorithmic Aspects of Cloud Computing, 2023.

[96] S. Zeuch, X. Chatziliadis, A. Chaudhary, D. Giouroukis, P. M. Grulich, D. P. A.
Nugroho, A. Ziehn and V. Mark, “NebulaStream: Data Management for the Internet of
Things,” Datenbank-Spektrum, vol. 22, pp. 131-141, 2022.

[97] M. N. L. Carvalho, A. Queralt, O. Romero, A. Simitsis, C. Tatu and R. M. Badia,
“Performance Analysis of Distributed GPU-Accelerated Task-Based Workflows,”
2024.

[98] K. Chasialis, T. Palaiologou, Y. Foufoulas, A. Simitsis and Y. Ioannidis, “QFusor: A
UDF Optimizer Plugin for SQL Databases,” 2024.

[99] H. Herodotou, Y. Chen and J. Lu, “A survey on automatic parameter tuning for big
data processing systems,” ACM Computing Surveys (CSUR), vol. 53, pp. 1-37, 2020.

[100] D. Tsesmelis and A. Simitsis, “Database optimizers in the era of learning,” in 2022
IEEE 38th International Conference on Data Engineering (ICDE), 2022.

[101] Z. Kaoudi, J.-A. Quiané-Ruiz, B. Contreras-Rojas, R. Pardo-Meza, A. Troudi and S.
Chawla, “ML-based cross-platform query optimization,” in 2020 IEEE 36th
International Conference on Data Engineering (ICDE), 2020.

[102] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh and R. Buyya, “iFogSim: A toolkit for
modeling and simulation of resource management techniques in the Internet of
Things, Edge and Fog computing environments,” Software: Practice and Experience,
vol. 47, pp. 1275-1296, 2017.

[103] C. Sonmez, A. Ozgovde and C. Ersoy, “Edgecloudsim: An environment for
performance evaluation of edge computing systems,” Transactions on Emerging
Telecommunications Technologies, vol. 29, p. e3493, 2018.

[104] C. Mechalikh, H. Taktak and F. Moussa, “PureEdgeSim: A simulation toolkit for
performance evaluation of cloud, fog, and pure edge computing environments,” in

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

106

2019 international conference on high performance computing \& simulation (HPCS),
2019.

[105] M. Salama, Y. Elkhatib and G. Blair, “IoTNetSim: A modelling and simulation platform
for end-to-end IoT services and networking,” in Proceedings of the 12th IEEE/ACM
International Conference on Utility and Cloud Computing, 2019.

[106] D. N. Jha, K. Alwasel, A. Alshoshan, X. Huang, R. K. Naha, S. K. Battula, S. Garg, D.
Puthal, P. James, A. Zomaya and others, “IoTSim-Edge: a simulation framework for
modeling the behavior of Internet of Things and edge computing environments,”
Software: Practice and Experience, vol. 50, pp. 844-867, 2020.

[107] M. Barika, S. Garg, A. Chan, R. N. Calheiros and R. Ranjan, “IoTSim-Stream:
Modelling stream graph application in cloud simulation,” Future Generation Computer
Systems, vol. 99, pp. 86-105, 2019.

[108] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman, D. Georgakopoulos and R.
Ranjan, “IOTSim: A simulator for analysing IoT applications,” Journal of Systems
Architecture, vol. 72, pp. 93-107, 2017.

[109] A. Shukla, S. Chaturvedi and Y. Simmhan, “Riotbench: An iot benchmark for
distributed stream processing systems,” Concurrency and Computation: Practice and
Experience, vol. 29, p. e4257, 2017.

[110] F. Ofli, F. Alam and M. Imran, “Analysis of social media data using multimodal deep
learning for disaster response,” arXiv preprint arXiv:2004.11838, 2020.

[111] J. Devlin, M.-W. Chang, K. Lee and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[112] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F.
Bressand, G. Lengyel, G. Lample, L. Saulnier and others, “Mistral 7B,” arXiv preprint
arXiv:2310.06825, 2023.

[113] Y. Chae and T. Davidson, “Large language models for text classification: From zero-
shot learning to fine-tuning,” Open Science Foundation, 2023.

[114] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang and W. Chen,
“Lora: Low-rank adaptation of large language models,” arXiv preprint
arXiv:2106.09685, 2021.

[115] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D.
Narayanan, Y. Wu, A. Kumar and others, “Holistic evaluation of language models,”
arXiv preprint arXiv:2211.09110, 2022.

[116] P. Thomas, S. Spielman, N. Craswell and B. Mitra, “Large language models can
accurately predict searcher preferences,” arXiv preprint arXiv:2309.10621, 2023.

[117] L. Gao, X. Ma, J. Lin and J. Callan, “Precise zero-shot dense retrieval without
relevance labels,” arXiv preprint arXiv:2212.10496, 2022.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

107

[118] J. Alcaraz, M. Landete and J. F. Monge, “Rank Aggregation: Models and Algorithms,”
in The palgrave handbook of operations research, Springer, 2022, pp. 153-178.

[119] N. Craswell, B. Mitra, E. Yilmaz, D. Campos and E. M. Voorhees, “Overview of the
TREC 2019 deep learning track,” arXiv preprint arXiv:2003.07820, 2020.

[120] N. Thakur, N. Reimers, A. Rücklé, A. Srivastava and I. Gurevych, “Beir: A
heterogenous benchmark for zero-shot evaluation of information retrieval models,”
arXiv preprint arXiv:2104.08663, 2021.

[121] M. Feurer, J. Springenberg and F. Hutter, “Initializing Bayesian Hyperparameter
Optimization via Meta-Learning,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, February 2015.

[122] A. Artikis, N. Katzouris, I. Correia, C. Baber, N. Morar, I. Skarbovsky, F. Fournier and
G. Paliouras, “A Prototype for Credit Card Fraud Management: Industry Paper,” in
Proceedings of the 11th ACM International Conference on Distributed and Event-
based Systems, DEBS 2017, Barcelona, Spain, June 19-23, 2017, 2017.

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

108

10 Appendix 1

10.1 Appendix for Online Optimization of Complex Event
Forecasting

10.1.1 RTCEF services

We present with more details the processing of each service comprising our framework.
Synchronisation of the various services is denoted by dotted arrows in Figure 3.

Collector. As mentioned earlier, the collector service is responsible for organising and
storing up-to-date datasets from the input stream. Therefore, the collector service consumes
the input stream (see `Data collection' in Figure 3), in parallel to the forecasting engine, and
stores subsets of it in time buckets of fixed bucket_size. The collector collects data in a sliding
window manner, i.e., it creates a dataset version using the last dt_size buckets from the

current time. A new dataset version, containing the bucket range (e.g., [Bucket56, Bucket59]),
is created and emitted to the `datasets' topic as soon as the last bucket in the range is full.
Old buckets that no longer serve a purpose, i.e. they are not part of a dataset to be or being
used by the factory service, are deleted for space economy.

Forecasting Engine. The forecasting engine, as illustrated at the top part of Figure 3,
consumes the input stream and produces CE forecasts as well as forecast performance
metrics. The distance between two consecutive reports is controlled by the reports_distance
parameter. Each performance report concerns the last batch of the input stream since the
previous report—this batch has equal size to the reports_distance parameter. Report

contents include, the number of True Positives (TP), True Negatives (TN), False Positives
(FP), and False Negatives (FN), as well as the MCC value and a timestamp of the report.
Reports are fed into the ‘reports’ topic and subsequently consumed by the ‘observer’ service.
In addition to the above, Wayeb monitors the `Models' topic for new model versions. When
a new model is available, Wayeb replaces its model with the latest available version.

Observer. The observer service monitors the performance of the forecasting engine and
produces `retrain' or `optimise' instructions as indicated by the policy of Algorithm , which
works as follows. The observer, consumes a new score from the reports topic (see top right
of Figure 3) and retains up to 𝑘 recent scores (lines 4-5)—in our case each score is an MCC
value. Then the observer will compute the first degree polynomial fc(x) = acx + bc (a trend

line) so that ac and bc minimize the following squared error E  =   ∑ |f(xj)  −  yj|
j=k
j=0 for x_j = j

and 𝑦𝑗 = 𝑠𝑐𝑜𝑟𝑒𝑐−𝑘+𝑗, where 𝑐 is an increasing integer denoting the id of the current score

(lines 9,10). If the slope (ac) of fc(x) is negative (indicating decrease in performance) and
less than a max_slope ∈  R− parameter (line 11) then a `retrain' instruction is produced and
fed into the ̀ instructions' topic (lines 15-17). Intuitively, forecasting performance deterioration
shortly after a new model deployment (i.e., ac  <  max_slope), indicates that the model failed,
and optimisation should thus be performed. Consequently, we place each newly deployed
model in a guard period (lines 14,17). A guard period starts after a model is deployed, and
ends after guard_n performace reports. If the performance of a model under a guard period

deteriotes (ac  <  min_slope) then an optimisation instruction is produced and fed into the
‘instructions’ topic (lines 12,13). If on the other hand, ac  <  min_slope is satisfied after

guard_n reports, then a ‘retrain’ instruction is produced for which a new ‘’guard’’ period
begins. Finally, to avoid pitfalls whereby the score drops suddenly very low, we employ an

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

109

additional condition: if the score of a report is lower than a threshold min_score (line 6) then
the observer asks directly for ‘optimisation’ and omits a ‘retrain’ instruction.

Algorithm 5: Observer service

Controller. The controller service controls model update procedures. To do so, the
controller, reads messages from the ‘instructions’ topic containing either ‘retrain’ or
‘optimisation’ instructions. Then, accordingly, it requests the model factory service to
produce a model via retraining, or initialises an optimisation procedure.

Retrain. In this case the controller sends a ‘train’ command along with the currently best
hyper-parameters. These hyper-parameters are either retrieved from the last optimisation
procedure, or provided by users if no optimisation has been performed yet.

Optimisation. Bayesian Optimisation (BO) requires a few samples obtained through micro-
benchmarks (see Background). Therefore when optimisation is required, the controller
service initiates a message exchange that works as follows. First, the controller sets up the
optimiser. Similar to [121], we leverage micro-benchmarks from previous runs. More
specifically, using the 𝑟𝑒𝑡𝑎𝑖𝑛_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  ∈  [0,1] parameter, we uniformly keep
⌊𝑟𝑒𝑡𝑎𝑖𝑛_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  ∗  𝑎𝑙𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠⌋ observations from the last executed BO run, where

𝑎𝑙𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the total number of micro-benchmarks. This allows us to skip the initial
sampling step of BO, accelerate optimisation, and retain useful information from previous
runs. In addition to the above, the controller sends to the factory an initilisation message so
that the appropriate resources are reserved. Then, the controller and the factory enter into
the ‘step phase’. During the step phase the controller sends ‘train & test’ commands to the
factory along with the hyper-parameters suggested by the acquisition function. After each
‘train & test’ command the controller awaits the corresponding performance report i.e., the
value of the 𝑆𝑐𝑜𝑟𝑒(𝑐) objective function. Upon receiving the performance report, the
optimiser is updated with the new sample and the next hyper-parameters are suggested for
the next step. The step phase ends when all micro-benchmarks are completed. Finally, once
all micro-benchmarks are completed and the best hyper-parameters are acquired, the
controller sends a finalisation message to the factory containing the ID of the best model. At

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

110

the same time, the controller updates the previously best hyper-parameters with the newly
acquired ones, ensuring availability of the latter for subsequent ‘retrain’ instructions.

Model factory. The model factory service trains, tests and sends models to the forecasting
engine. Moreover, the factory reads dataset versions from the `Datasets' topic and
assembles temporary datasets using the received bucket ranges (included in a dataset
version message). Upon receiving a ‘train’ command the factory trains a model on the latest
assembled dataset and sends a new model version to the ‘Models’ topic. Concerning
production of models through optimisation, the factory first ‘locks’ the most recent assembled
dataset so that the same dataset is used throughout the optimisation procedure. Then it
trains, saves and tests candidate models on the locked dataset and reports prediction
performance metrics to the controller. Finally, once optimisation is completed, the factory
sends a new model version to the ‘Models’ topic along with its production time. It is only at
this point, that the CEF engine will stop momentarily for model replacement.

10.1.2 Financial experiments

Experimental setup

Credit card fraud management. We use a synthetic dataset provided by Feedzai30
containing 1M credit card transaction events taking place over a period of 82 weeks. Each
event contains, among others, the card ID, the amount and time of the transaction. We
evaluate RTCEF on a pattern, representing a fraudulent behaviour as a sequence of
consecutive increasing transactions [122]:

Rcards  ≔  (𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑖𝑓𝑓  >  0) ⋅ (𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑖𝑓𝑓  >  0) ⋅ (𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑖𝑓𝑓  >  0) ⋅

 (amountDiff  >  0) ⋅ (amountDiff  >  0) ⋅ (amountDiff  >  0) ⋅

(𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑖𝑓𝑓 > 0)

We enrich events of the input stream with an additional attribute amountDiff which is equal

to the difference between the previous transaction and the current one. Therefore Rcards is
satisfied when 8 consecutive transactions happen with increasing amounts. In order to
simulate evolving fraud, we modify the financial dataset by changing randomly every 4 to 8
weeks the range of the highly correlated feature amountDiff. Similar to the maritime dataset,

for validating our results, we create 21 datasets (FDi,  i  ∈  [0,20]) by shifting 4 weeks the start
of each dataset in a cyclic manner.

Experimental results

Financial fraud management. Figure 48 left, shows that for FD0 RTCEF overcomes input
data evolutions, and significantly outperforms the offline approach. A similar pattern can be
observed also for dataset FD8 (Figure 48 right), where changes in the input drop the MCC
score of the offline approach to almost 0. Again in this case, RTCEF, adapts and maintains
overall a steady MCC over time. An interesting experiment, is that of dataset FD1 (Figure 48

middle). Here, after optimisation is requested on week 26, RTCEF produces steadily an MCC
score of ~0.75. Conversely, the offline approach on weeks 35-55 and 61-71 produces a
score of ~0.85, thus outperforming RTCEF. In this case, RTCEF fails to detect input stream
data evolutions as after week 26 there are no major fluctuations in forecasting performance.

30 https://feedzai.com

D4.1 Initial Report on Complex Event Forecasting, Learning and
Analytics
Version 1.0

111

Figure 49 bottom, shows that for FD1 our framework has slightly less average 𝑀𝐶𝐶, than the

offline approach. However, for all other datasets FDi, RTCEF significantly outperforms the
offline approach (see Figure 49).

Figure 48: Experimental results for datasets FD{0/3/5} with Rcards. 'rt' and 'opt'
denote 'retrain' and 'optimisation'. Upper plots show MCC over time, while lower

plots show improvement

Figure 49: Avg MCC per FDi for Rcards

