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Executive Summary 

 

The "CREXDATA Deliverable 4.1" report presents a comprehensive analysis and evaluation 
of the CREXDATA project, focusing on the development and implementation of advanced 
data processing techniques for real-time complex event processing. The project employs a 
distributed architecture using Kafka to facilitate communication between multiple services, 
ensuring efficient and scalable data handling. This architecture supports the integration and 
coordination of diverse data sources, enhancing the system's ability to process high volumes 
of data in real time.  

Key contributions include the introduction of Symbolic Regular Expressions with Memory 
and Output (SREMO), which enhance the detection of complex relational patterns through 
nested operators and n-ary expressions. This innovative approach significantly improves the 
accuracy and efficiency of pattern recognition in real-time data streams, providing robust 
solutions for various applications. We also present a method for optimizing our Complex 
Event Forecasting engine in an online manner. This is a first step towards fine-tuning our 
engine for multi-resolution forecasting. It then presents an extension of our forecasting 
engine so that it can handle more expressive patterns. 

With respect to critical maritime events, the document presents the components developed 
for forecasting and resolving vessel-to-vessel collisions and for hazardous weather rerouting 
at sea in the face of extreme weather events. 

We then present the simulation scenarios from all three CREXDATA use-cases. Also, we 
provide an overview of the methods that we are going to apply for interactive simulation 
parameters exploration. 

The report includes a detailed scalability analysis and parameter tuning of the algorithms 
used within the CREXDATA framework. This analysis underscores the importance of 
parallelization in optimizing the execution time of algorithms over networks composed of 
hundreds or thousands of devices. By effectively managing the computational load across 
multiple devices, the project ensures that the system can handle large-scale data processing 
tasks with high efficiency. This scalability is crucial for applications that require real-time 
processing of vast amounts of data, such as monitoring and responding to natural disasters. 

Our work on Federated Machine Learning, presented next, focused on developing 
Functional Dynamic Averaging, a bandwidth-efficient technique for Federated Deep 
Learning. Comparison to previous state-of-the-art indicates orders-of-magnitude efficiencies 
in communication cost, especially in Computer Vision problems related to the Weather 
Emergency use case. 

The algorithmic suite CREXDATA incorporates to support its overall architectural framework 
with optimized analytics as a service (i.e., attributing resources to the lot of CREXDATA 
extreme scale analytics workflows, on demand, simultaneously achieving good 
performance) is presented afterwards.   
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Next, we present a social media toolkit developed to monitor and extract key information 
from social networks to aid civil protection authorities during weather emergencies. This 
toolkit consists of a stream-enabled multilingual language model for event type detection, 
and a question answering model for extracting information from relevant social media posts. 
The report delves into the challenges and solutions associated with acquiring and mining 
useful information about emerging events from multilingual social media posts. These posts, 
often published by local government agencies or individuals directly involved in 
emergencies, provide valuable real-time perspectives. However, the unstructured and often 
ungrammatical nature of social media content, combined with its multilinguality, poses 
significant challenges. The project addresses these issues by developing advanced text 
mining algorithms that support civil protection authorities in responding to weather-induced 
emergencies, thus improving the overall efficiency and effectiveness of emergency response 
strategies. 

Overall, the deliverable demonstrates substantial advancements in real-time data 
processing, contributing valuable methodologies and tools for emergency response and 
complex event detection. The CREXDATA project's innovations in distributed architectures, 
pattern recognition, and text mining represent significant strides in the field, offering practical 
solutions to real-world problems. This report not only highlights the technical achievements 
of the project but also emphasizes its potential impact on enhancing the responsiveness and 
effectiveness of emergency management systems. 
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1 Introduction 

This document presents the progress of the CREXDATA project with respect to Complex 
Event Forecasting, Learning and Analytics. WP4 develops the forecasting, learning and 
scalability tools for analytics and distributed ML of CREXDATA. The tools developed in WP4 
take into account the forecasting and scalability requirements that are specific to the use 
cases of WP2. 

 

1.1 Purpose and Scope 

The reader is expected to be familiar with Complex Event Forecasting, Artificial Intelligence, 
Federated Learning, Text Mining and Distributed processing techniques, as well as the 
general intent and concept of the CREXDATA project. The target readership is: 

• CREXDATA researchers 

• CREXDATA audit 

 

CREXDATA focuses on event forecasting, interactive and federated machine learning and 
text mining techniques for large scale data. This document presents the current 
advancements and discusses the scientific and technological issues that are being 
investigated in Work-Package 4, with respect to Complex Event Forecasting, Learning and 
Analytics. 

 

1.2 Relation to other Deliverables 

This document is related to the following project deliverables: 

• D2.2 Initial Use Case Evaluation, Pilots, Demonstrators and Simulation Models and 
Tools; 

• D3.1 Initial Report on System Architecture, Integration and Released Software 
Stacks. 

 

1.3 Source code availability 

CREXDATA has promised to deliver the source code of its solutions. Below we provide a list 
of source code repositories related to the present deliverable. Please note that some of the 
repositories may be anonymous because the relevant papers have not been published yet.  

• Repositories for Task 4.1 
o https://github.com/ElAlev/Wayeb  
o https://github.com/manospits/rtcef  
o https://github.com/ElAlev/cer-srt 

• Repositories for Task 4.2 
o https://github.com/xarakas/ETSC  

• Repositories for Task 4.3 

https://github.com/ElAlev/Wayeb
https://github.com/manospits/rtcef
https://github.com/ElAlev/cer-srt
https://github.com/xarakas/ETSC
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o https://github.com/miketheologitis/FedL-Sync-FDA  
o https://github.com/miketheologitis/TFD-FedL-Sync-FDA  
o https://github.com/gfrangias/KungFu 

• Repositories for Task 4.4 
o https://github.com/DBanelas/crexdata-optimizer  
o https://github.com/DBanelas/placement-simulation-suite  

• Repositories for Task 4.5 
o https://github.com/langtech-bsc/crexdata-task4.5  
o https://anonymous.4open.science/r/genra-BB1B  

 

1.4 Structure of the Deliverable 

This document has the following structure: 

• Section 2 presents a method for optimizing our Complex Event Forecasting engine 
in an online manner. This is a first step towards fine-tuning our engine for multi-
resolution forecasting. It then presents an extension of our forecasting engine so that 
it can handle more expressive patterns and our work of extending an event 
recognition engine with complex temporal relations. Finally, the components for 
forecasting and resolving critical maritime events are presented. 

• Section 3 presents the simulation scenarios from all three CREXDATA use-cases. 
Also, we provide an overview of the methods that we are going to apply for interactive 
simulation parameters exploration, such as active learning, optimization of 
interventions, early time-series classification, and reinforcement learning. 

• Section 4 presents our work on Federated Machine Learning. It focuses on 
developing Functional Dynamic Averaging, a bandwidth-efficient technique for 
Federated Deep Learning. Comparison to previous state-of-the-art indicates orders-
of-magnitude efficiencies in communication cost, especially in Computer Vision 
problems related to the Weather Emergency use case. 

• Section 5 presents the CREXDATA optimization approach which automates the 
process of mapping logical workflows (workflows which only describe the application 
logic, being deprived of any physical execution aspect) to physical workflows 
deployable across the networked settings over which CREXDATA operates. It details 
the optimization algorithmic suite of CREXDATA and explains the way it optimizes 
the execution of arbitrarily many workflows over arbitrarily many devices, under 
arbitrarily many physical execution options in volatile streaming and network settings. 

• Section 6 presents the text mining algorithms and language models developed for 
monitoring and extracting key information about weather emergencies from social 
media messages. It details the language model for event type detection, the module 
for information extraction, and the design decisions in each step. 

  

https://github.com/miketheologitis/FedL-Sync-FDA
https://github.com/miketheologitis/TFD-FedL-Sync-FDA
https://github.com/gfrangias/KungFu
https://github.com/DBanelas/crexdata-optimizer
https://github.com/DBanelas/placement-simulation-suite
https://github.com/langtech-bsc/crexdata-task4.5
https://anonymous.4open.science/r/genra-BB1B
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2 Multi-Resolution Complex Event Forecasting 

In this Section, we present our work for multi-resolution Complex Event Forecasting (CEF). 
Our work is based on an already existing forecasting engine which we have developed in 
previous projects, called Wayeb1 [1] [2]. Wayeb is a forecasting engine which employs 
symbolic automata as its computational model. Wayeb is both efficient and expressive, while 
maintaining clear, compositional semantics for the patterns expressed in its language due to 
the fact that symbolic automata have nice closure properties. At the same time, it is 
expressive enough to support most of the common Complex Event Recognition operators. 
Specifically, our contributions for the first half of the project are the following: 

• Section 2.1 presents RTCEF, an open-source novel framework for run-time 
optimisation of CEF.  More specifically, RTCEF, aims to facilitate online CEF 
training/hyperparameter optimization over streams with constantly evolving 
conditions. We evaluate RTCEF on two real-world use-cases from the maritime and 
financial domains and our reproducible results show that RTCEF can significantly 
improve forecasting performance with minimal lag upon run-time changes. For the 
second half of the project, the goal is to extend this optimization technique in order 
to target forecasting at multiple temporal resolution / earliness values. 

• Section 2.2 presents an extension of Wayeb which allows it to handle more 
expressive patterns, required for the CREXDATA project. Wayeb can now 
accommodate patterns with relational constraints, e.g., a decreasing trend in the 
number of COVID cases. We present a summary of our results in order to make the 
deliverable succinct. A complete description of our work may be found in an extended 
technical report2.  

• Section 2.3 presents an extension of another event recognition engine that we have 
at our disposal, RTEC3. The engine is extended so as to be able to handle relations 
expressed in Allen’s interval algebra, thus significantly increasing its expressive 
power. 

 

 

2.1 Online optimization of Complex Event Forecasting 

CEF, among other reasoning tasks, operates over constantly evolving conditions. Take for 
example the problem of maritime route optimisation. Vessels may follow a different route 
depending on the weather conditions or in general the season of the year [3]. Another 
example is financial fraud detection—fraudsters constantly adapt their tactics to avoid getting 
caught. While such problems can be treated by offline trained models for a given time period, 
in practice, such models fall short in settings where dynamic changes that invalidate previous 
training data are present. CEF systems in particular, typically, rely on probabilistic models 
trained on historical data [4] [5] [1]. This renders CEF systems inherently susceptible to 
evolutions in the input that can invalidate their underlying models—recall the example 
mentioned earlier relating maritime routes with weather. Additionally, as with the majority of 

 

1 https://github.com/ElAlev/Wayeb  
2 https://github.com/ElAlev/cer-srt/blob/main/docs/cer-srt-extended-report.pdf  
3 https://github.com/aartikis/RTEC  

https://github.com/ElAlev/Wayeb
https://github.com/ElAlev/cer-srt/blob/main/docs/cer-srt-extended-report.pdf
https://github.com/aartikis/RTEC
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trainable models, CEF models have multiple hyper-parameters that require fine tuning for 
optimal performance. Wayeb [2], one of the first CEF engines, is no exception to the above. 
In prior work [6], a methodology for hyper-parameter optimisation, specifically tailored for 
Wayeb, was proposed. While this method can successfully find near-optimal hyper-
parameters in the offline setting, it cannot handle dynamic evolutions of the input that can, 
in the future, deteriorate CEF performance. 

To address the above challenges, we propose RTCEF a novel framework for Run-Time 
optimisation of CEF. RTCEF4, adopts a distributed architecture comprising several services 
communicating via Kafka [7] [8] [9], and allows run-time update of CEF models. In other 
words, it supports continuous adaptation to dynamic changes in the input stream while also 
ensuring little to no downtimes in CEF. Since hyper-parameter optimisation is an expensive 
procedure, RTCEF employs a trend-based policy which allows, in addition to hyper-
parameter tuning, CEF re-training without changing hyper-parameters. The contributions of 
this work are thus the following: (a) we introduce RTCEF, an open-source novel framework 
for run-time optimisation of CEF; (b) the distributed architecture we employ allows CEF to 
run in parallel to training, or optimisation tasks, therefore ensuring no disruptions; (c) we 
extensively evaluate RTCEF on two real-world use-cases from the maritime and financial 
domains; (d) our reproducible results show that RTCEF can significantly improve forecasting 
performance with minimal lag upon run-time changes. 

2.1.1 Background 

Complex Event Forecasting  

CEF is a task that allows forecasting CEs of interest over an input stream of low level events; 
e.g., timestamped position messages of maritime vessels, or credit card transactions. 
Forecasts involve the occurrence of a CE in the future accompanied by a degree of certainty 
[2]. This behaviour is usually derived from stochastic models that project into the future 
evolutions of the input that can cause a detection of a CE. For the task of CEF, we utilise 
Wayeb, a CEF engine which employs symbolic automata as its computational model. Wayeb 
has clear, compositional semantics for the patterns expressed in its language and can 
support most of the common operators [10]. Wayeb’s patterns are expressed as Symbolic 
Regular Expressions (SREs), where terminal expressions are Boolean expressions, i.e.  
logical formulae that use the standard Boolean connectives. Formally, Wayeb SRE(s) are 
defined using the grammar below: 

R ∷= 𝑅1 + 𝑅2(union) | 𝑅1 ⋅ 𝑅2 (concatenation) | 𝑅1
∗ (Kleene-star) 

          | ! 𝑅1(complement) | ψ (Boolean Expression) 

where 𝑅1,  𝑅2 are also regular expressions, and ψ is a Boolean expression. The semantics 
of the above operators are detailed in [2]. Evaluation of SRE on a stream of events requires 
first their compilation into symbolic automata. Transitions in symbolic automata are labelled 
with Boolean expressions. For a symbolic automaton to move to another state, it first applies 
the Boolean expressions of its current state's outgoing transitions to the element last read 
from the stream. If an expression is satisfied, then the corresponding transition is triggered 
and the automaton moves to that transition's target state. For example, in a maritime 
monitoring scenario, a domain expert could use Wayeb’s language to specify a pattern R  ≔
 (speed  >  10)  ⋅  (speed  >  10) for identifying speed violations in specific areas where the 

 

4 https://github.com/manospits/rtcef 

https://github.com/manospits/rtcef
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maximum allowed speed is 10 knots. This pattern is satisfied when there are two consecutive 
events where a vessel's speed exceeds the threshold. We require two consecutive violations 
in order to avoid situations where the vessel has only a momentary or random lapse.  

Table 1: An example stream composed of five events. Each event has a vessel 
identifier, a value for that vessel's speed and a timestamp 

vessel id 78986 78986 78986 78986 78986 … 

speed 5 3 9 14 11 … 

timestamp 1 2 3 4 5 … 

 

 

Figure 1: Streaming symbolic automaton created from the speed related expression 

The compiled automaton corresponding to 𝑅 is illustrated in Figure 1. For an input stream 
consisting of the events in Table 1 the automaton would run as follows. For the first three 
input events, the automaton remains in state 0. After the fourth event, it moves to state 1 
and after the fifth event it reaches its final state, state 2, triggering also a CE detection for 𝑅 

at timestamp  =  5. 

To perform CEF, we need a probabilistic description for a symbolic automaton derived from 
a SRE. For this purpose, we employ Prediction Suffix Trees (PSTs) [11] [12]—a form of 
Variable-order Markov Models (VMM). VMMs, compared to fixed-order Markov models, 
capture longer-term dependencies as in practice they allow for higher order (𝑚) values than 
the latter. Each node in a PST, contains a ‘’context’’ and a distribution that indicates the 
probability of encountering a symbol, conditioned on the context. Figure 2 (top left) shows 
an example of a PST. Each ‘’symbol’’ of a PST corresponds to a predicate of the automaton 
for which we want to build a probabilistic model. Consequently, with the use of a PST, for 
every state 𝑞 of an automaton, we can calculate the waiting-time distribution (Wq), that is, 

the probability of reaching a final state in 𝑛 transitions from state 𝑞. Recall that a CE is 
detected whenever an automaton reaches a final state. Figure 2 (middle and bottom left) 
shows an example of an automaton and the waiting-time distributions learned from a training 
dataset. Taking all of the above into account, Wayeb performs CEF as follows. Given the 
current state 𝑞 of an automaton, using Wq, it computes the probability of reaching a final 

state (pCE) within the next 𝑛 transitions (or, equivalently, input events). If pCE exceeds a 
confidence threshold θfc ∈ [0,1], Wayeb emits a ‘’positive’’ forecast (denoting that the CE is 
expected to occur), otherwise a ‘’negative forecast’’ (no CE is expected) is emitted. 

The above discussion illustrates the need for optimising multiple hyper-parameters. For 
example, although setting the maximum order 𝑚 of the VMM generally improves accuracy, 

it leads to longer training times. Similarly, finding the optimal value for θfc is a crucial step as 
low or high θfc values can cause many false positives or false negatives respectively. 
Manually fixing the above parameters would lead to severely sub-optimal results. On the 
contrary, exhaustive parameter space exploration is of high computational complexity 
making it prohibitive for run-time settings. To address these issues, we employ Bayesian 
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optimisation to efficiently explore only a small fraction of the parameter space and learn the 
optimal hyper-parameter values for the entire parameter space. 

Offline Optimisation 

In prior work [6] a framework for offline hyper-parameter optimisation of CEF was introduced. 
The offline CEF optimiser of [6] and RTCEF utilise Bayesian optimisation as the underlying 
mechanism for hyper-parameter calibration. Bayesian Optimisation (BO) [13] [14] is a 
stochastic method used for optimising costly objective functions that are complex or 
unknown. In our context, the objective function describes the performance of a CEF system. 
Therefore, the goal of BO is to find the vector of system parameters that maximises CEF 
performance, using a targeted, minimal set of system runs, termed ‘micro-benchmarks’ 
(essentially function evaluations), as training samples. We want to achieve the best possible 
CEF performance using as few micro-benchmarks as possible; this is a setting where BO 
perfectly fits [13] [14] [6]. BO employs a surrogate model, usually a Gaussian Process (GP) 
Regressor (GPR), to approximate the objective function and iteratively refines this model. 
Priors about the objective function, often for the mean and covariance functions of the GP 
model, are set before any data observation. Every time we observe a new micro-benchmark 
and collect system performance metrics, we acquire a training sample to fit on the GPR, 
thereby updating our posterior belief in light on new evidence. In this work, the posterior 
distribution represents our updated knowledge about the CEF system's performance. The 
posterior distribution after observing 𝑛 new training samples (i.e., system runs in our case) 
is given by the surrogate model that has been updated with the newly acquired knowledge 
about CEF performance under a new hyper-parameter combination using Bayesian 
inference (see for example [6]). 

Micro-benchmark selection starts with an initial set chosen randomly from the input 
parameter domain; we execute respective micro-benchmarks and observe performance 
metrics in a set  Dinit. Subsequent micro-benchmarks are selected by an acquisition function 
(e.g., Expected Improvement) which balances exploration of unexplored regions and 
exploitation of current knowledge to identify points likely to yield the best performance. For 
instance, in the plot at the bottom right of Figure 2, the acquisition function chooses the point 
in the input domain with the highest uncertainty. BO concludes either when a micro-
benchmark budget is depleted or when the optimal value for the objective function 
converges. The plot at the top right of Figure 2 illustrates a GPR with minimal uncertainty 
around its mean values, after the microbenchmark budget has been fitted.  

 

Figure 2: Offline CEF optimiser 
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The work of [6] introduces the offline CEF optimiser, a framework for offline hyper-parameter 
optimisation of CEF. Figure 2 illustrates the offline CEF Optimiser [6], comprising the CEF 
Engine alongside Benchmarker, Statistics Collector, and BO Cost Modeller. The CEF Engine 
utilises training and validation datasets to construct probabilistic models for Wayeb, while 
the remaining components execute BO (offline), as described earlier. The Benchmarker 
initialises optimisation by sampling configurations and conducting micro-benchmarks, while 
the Statistics Collector gathers performance statistics for the BO Cost Modeller. In this 
setting, the relevant performance metrics are Matthew's Correlation Coefficient (𝑀𝐶𝐶) and 

training time (𝑡𝑡) combined together in a single formula, i.e. Score(c)  =  w1  ×  MCC(c)  −

 w2  ×   tanh (
tt(c)

θtt
  −  1), where θtt, is a desired, target training time above which 𝑡𝑡 values 

get penalised. w1  +  w2  =  1 are weights that allow adjustable emphasis on 𝑀𝐶𝐶 or 𝑡𝑡. The 

BO Cost Modeler fits a GPR to Dinit and prescribes subsequent micro-benchmarks using an 
acquisition function. The Benchmarker decides whether optimisation should conclude or 
continue based on BO convergence. In the former case, the optimal configuration is 
deployed, while in the latter further micro-benchmarks are conducted. This iterative process 
ensures the deployment of the most effective CEF Engine configuration while maximising 
performance and minimising computational overhead. 

On the other hand, the offline CEF optimiser, suffers from several disadvantages: (i) it drives 
its decisions by attributing equal importance to all performance metrics, while in a streaming 
setup we often need to take into consideration only a sliding window of recent measurements 
and defy obsolete ones; (ii) it cannot optimise CEF hyper-parameters at run-time which is a 
crucial limitation, since fluctuations in the input's statistical properties in streaming settings 
is the norm rather than an infrequent situation; (iii) it cannot distinguish whether model hyper-
parameters should be adjusted due to such statistical changes or if it is only the Wayeb's 
internal probabilistic model (PST) that should be re-trained, without hyper-parameter re-
calibration. RTCEF, presented in the next section, addresses all these issues.   

2.1.2 Run-time CEF optimisation 

RTCEF, is built with two major goals in mind. First it should allow run-time updating of CEF 
models for treating input data evolutions that would otherwise lead to deterioration of 
forecasting performance; and second, it should perform CEF with no disruptions, i.e. model 
updating should not cause delays on CEF. Here, we present the architecture of our 
framework from a bird's eye perspective while in Appendix 10.1.1 we describe each service 
with more details. 

Architectural overview 

The architecture of RTCEF consists of five main services, acting as Kafka producers and 
consumers, running synergistically to ensure undisrupted CEF as well as dynamic CEF 
model retraining or optimisation. Figure 3 illustrates these services and the communication 
lines between them. RTCEF is divided into four main parts, namely CEF, data collection, 
monitoring of scores, and optimisation or re-training. Below we describe these parts.  
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Figure 3: Architecture of RTCEF. Cylinders and rounded rectangles denote topics 
and services respectively. For simplicity, we omit synchronisation topics; instead 

we use grey arrows 

CEF. The CEF part contains the forecasting engine service, which in our case is Wayeb. 
Wayeb reads timestamped simple events from the input stream, and produces an output 
stream of CE forecasts. In parallel, the engine reads from the models topic, which contains 
updated model versions, i.e. PSTs. The engine runs undisrupted, pausing momentarily only 
for model replacement when needed as explained shortly. Finally, the engine additionally 
produces a stream of CEF forecasting performance reports. Recall that Wayeb performs 
both CEF and CER, therefore scores can be produced on-the-fly; every forecast can be 
evaluated by the presence (or absence) of subsequent CEs. 

Data collection. This part of RTCEF handles data collection from the input stream (e.g., a 
set of maritime vessel positional messages or credit card transactions). Data collection is 
needed as retraining or optimisation procedures require training datasets. In the run-time 
setting training datasets evolve over time. Therefore, the data collection part of RTCEF 
includes the collector service, a data processing module, that organises and stores, 
according to some policy, subsets of the input stream. This ensures that up-to-date datasets 
are available for subsequent re-training or optimisation.  

Performance monitoring. In order to determine whether the performance of the CEF 
engine (i.e., the 𝑀𝐶𝐶 score) has deteriorated, the quality of its forecasts must be monitored. 
This task is handled by the observer service which consumes CEF performance reports from 
the ‘reports’ topic, and produces ‘retrain’ or ‘optimise’ instructions via a trend-based policy.  

Optimisation and re-training. The final part of RTCEF involves two services, a model 
factory service, and a controller service. The controller reads the instructions (‘retrain’ or 
‘optimise’) of the observer, and accordingly initiates a training or optimisation procedure—
we will refer to both as ‘update model procedure’. For ‘retrain’ instructions, the controller 
sends a ‘train’ request to the model factory for producing a model. Respectively, for 
‘optimisation’ instructions, the controller initiates an optimisation message exchange with the 
factory, whereby the controller sends ‘train & test’ requests, while the factory replies with 
performance metrics. In both ‘train’ and ‘train & test’ requests, the controller service supplies 
the model hyper-parameters. Note that during an update model procedure, the factory will 
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use the latest dataset made available by the collector. When a new model procedure is 
completed, the model factory sends a new model version to the ‘Models’ topic.  

2.1.3 Experimental evaluation 

Experimental setup 

We evaluate RTCEF on maritime situational awareness and credit card fraud management. 
For a smoother presentation we will omit experiments concerning credit card fraud 
management from here and present them later in Appendix (Section 10.1).  

Maritime Situational Awareness.  We use a real-world, publicly available, maritime dataset 
containing 18M spatio-temporal positional AIS (Automatic Identification System) messages 
transmitted between October 1st 2016 and 31st March 2026 (6 months), from 5K vessels 
sailing in the Atlantic Ocean around the port of Brest, France [15]. AIS allows the 
transmission of information such as the current speed, heading and coordinates of vessels, 
as well as, ancillary static information such as destination and ship type. We evaluate RTCEF 
on a maritime pattern, which expresses the arrival of a vessel at the main port of Brest [6]: 

𝑅port  ≔  (¬𝐼𝑛𝑠𝑖𝑑𝑒𝑃𝑜𝑟𝑡(𝐵𝑟𝑒𝑠𝑡)) ∗   ⋅  (¬𝐼𝑛𝑠𝑖𝑑𝑒𝑃𝑜𝑟𝑡(𝐵𝑟𝑒𝑠𝑡))  ⋅ 

          (¬ InsidePort(Brest))  ⋅   (InsidePort(Brest)) 

InsidePort(Brest) is true, when a vessel is within 5 km from the port of Brest. Consequently, 

Rport is satisfied if a sequence of at least three events occur. The first two require the vessel 

to be away from the port—thus limiting false positives from noisy entrances—, while the last 
denotes that the vessel has entered the port. This CE is important for port management and 
logistics reasons. Furthermore, we perform experiments for a CE termed Rfish, and satisfied 
when vessels enter fishing areas and sail with fishing speed. To cross validate our approach, 
we create 6 datasets (MDi,  i  ∈  [0,5]) by shifting the starting month in a cyclic manner.  

RTCEF initialisation.  RTCEF requires an initial forecasting model for the engine. Alongside 
this model, the hyper-parameters used for its creation must be provided to the controller, 
ensuring their availability for any ‘retrain’ commands. Furthermore, if the initial model was 
produced via offline BO (as in [6]) then a sample of its micro-benchmarks can be supplied to 
the controller service. If prior samples are not available, then the first ‘optimisation’ call starts 
from scratch. Finally, the user must provide a configuration file whereby parameters such as 
bucket_size and max_slope are set (see Appendix, Section 10.1). 

We perform offline hyper-parameter optimisation on the first four weeks of each dataset MDi 
and use the resulting model, hyper-parameters and micro-benchmark samples for 
initialisation. We set w2 in Score(c) (see Background) to 0 as we focus on improving MCC 
scores. Since model update procedures happen in parallel to CEF, training time is no longer 
of importance. Concerning the hyper-parameter space, we chose the same setting as in [6]. 
To showcase, the benefit of RTCEF, we additionally perform experiments with the offline 
CEF optimiser (see Background): i.e. for each FDi/MD𝑖 we perform CEF using the initial 
model of each dataset. In what follows, the experiments that utilise our framework are 
labelled as ‘fr’ while experiments that are performed only with offline trained models are 
labelled as ‘no fr’. 

RTCEF is implemented in Python 3.9.18, while the used Kafka version was 3.5.2. For BO, 
we use the scikit-optimize library [16] 0.9.0. The experiments are conducted on a server 
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running Debian 12 with an AMD EPYC 7543 32-Core Processor and 400G of RAM. Our 
framework is open-source and our experiments are fully reproducible. 

Experimental results 

Figure 4 shows the evolution of MCC over time for Rport  along with the score improvements 

for the cases ‘fr’ and ‘no fr’ for the maritime MD0/3/5 datasets. Results concerning MD0—the 

dataset in its original order—show that the offline approach (‘no fr’) demonstrates poor 
performance and significant fluctuations in 𝑀𝐶𝐶 scores over time.  Our approach improves 
scores and reduces fluctuations.  

For MD0 RTCEF drammatically improves MCC up to ~ 300% following retraining and 
optimisation procedures in weeks 5 and 6, respectively. A similar pattern is observed on the 
MD5 dataset. On the MD3 case, results show that the initial model, generated by hyper-
parameter optimisation on weeks 12 to 15, underperforms. However, this behaviour is 
immediately cured when the observer requests optimisation in the first running week (see 
orange dot in week 16 of Figure 4 middle)—this is due to the score being less than min_score 
(see Algorithm ). We attribute the low scores of the initial model of the 𝑀𝐷3 dataset on the 
lack of vessels passing through the monitoring area on that period (see Figure 5 right-a). 
Figure 5 left-a, shows that the average 𝑀𝐶𝐶 for each dataset 𝑀𝐷𝑖 (𝑖  ∈  [0,5]) when using 
RTCEF (`fr') is consistently higher than that achieved  via a single model trained only on the 
first four weeks of each dataset (‘no fr’). In Figure 5 left-b we report results concerning the 
𝑅𝑓𝑖𝑠ℎ CE. For the 𝑅𝑓𝑖𝑠ℎ pattern there are no input data evolutions that affect CEF 

performance, therefore in this case, the results show that when data evolutions that affect 
model performance are not present, using RTCEF does not affect forecasting performance. 

Concerning processing efficiency, interruptions in CEF are minimal as retraining or 
optimisation procedures occur in parallel to CEF, thus efficiency remains unaffected. 
However, when a new model request arises, new model versions arrive with some delay. 
Recall, that until a new model is available, the engine consumes, in parallel, the input stream 
with the already deployed model. Figure 5 right-b shows the mean percentage of time spent 
every four weeks for production of models (we denote this value as 𝑀𝑃𝑃𝑇) involving the 
Rport pattern. The results show that every four weeks, on average less than ~0.2% of time 

is spent for model production (roughly 70 minutes). Consequently, RTCEF spends minimal 
time every four weeks for model production, thus ensuring minimal delays and a resource-
friendly behaviour as optimisation or retraining procedures are not overperformed. 

 

Figure 4: Experimental results for datasets MD{0/1/8} with Rport. 'rt' and 'opt' denote 
'retrain' and 'optimisation'.  Upper plots show MCC over time; lower plots show 

improvement 
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Figure 5: Avg MCC (left-a, left-b) per FDi. Dataset and CER characteristics (right-a).  
‘v’, ‘vw/m’ and ‘m’ stand for ‘vessels’, ‘vessels with matches’ and ‘matches’. MPPT 

(right-b) per MDi for Rport 

 

2.2 Complex Event Recognition with Symbolic Register 
Transducers 

Automata are of particular interest for the field of CER, because they provide a natural way 
of handling sequences. As a result, the usual operators of regular expressions, like 
concatenation, union and Kleene-star, have often been given an implicit temporal 
interpretation in CER. For example, the concatenation of two events is said to occur 
whenever the second event is read by an automaton after the first one, i.e., whenever the 
timestamp of the second event is greater than the timestamp of the first. On the other hand, 
atemporal constraints are not easy to define using classical automata, since they either work 
without memory or, even if they do include a memory structure, e.g., as with push-down 
automata, they can only work with a finite alphabet of input symbols. For this reason, the 
CER community has proposed several extensions of classical automata. These extended 
automata have the ability to store input events and later retrieve them in order to evaluate 
whether a constraint is satisfied [17] [18] [19]. They resemble both register automata [20], 
through their ability to store events, and symbolic automata [21], through the use of 
predicates on their transitions. They differ from symbolic automata in that predicates apply 
to multiple events, retrieved from the memory structure that holds previous events. They 
differ from register automata in that predicates may be more complex than that of 
(in)equality. 

One issue with these CER-specific automata is that their properties have not been 
systematically investigated, in contrast to models derived directly from the field of languages 
and automata; see [22] for a discussion about the weaknesses of automaton models in CER.  
Moreover, they sometimes need to impose restrictions on the use of regular expression 
operators in a pattern, e.g., nesting of Kleene-star operators is not allowed. We propose a 
system for CER, based on an automaton model which can address these issues. This model 
is a combination of symbolic and register automata. We call such automata Symbolic 
Register Transducers (SRT). SRT extend the expressive power of symbolic and register 
automata, by allowing for more complex patterns to be defined and detected on a stream of 
events. We also present a language with which we can define patterns for complex events 
that can then be translated to SRT. We call such patterns Symbolic Regular Expressions 
with Memory and Output (SREMO), as an extension of the work presented in [23], where 
Regular Expressions with Memory (REM) are defined and investigated. \rem\ are extensions 
of classical regular expressions with which some of the terminal symbols of an expression 
can be stored and later be compared for (in)equality. SREMO allow for more complex 
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conditions to be used, besides those of (in)equality. They additionally allow each terminal 
sub-expression to mark an element as belonging or not to the string/match that is to be 
recognized, thus acting as transducers. 

Our contributions may then be summarized as follows: 

• We present a CER system based on a formal framework with denotational and 
compositional semantics, where patterns may be written as Symbolic Regular 
Expressions with Memory and Output (SREMO). 

• We show how this framework subsumes, in terms of expressive power, previous 
similar attempts. It allows for nesting operators and selection strategies. It also allows 
n-ary expressions to be used as conditions in patterns, thus allowing the detection of 
relational patterns. 

• We extend previous work on automata and present a computational model for 
patterns written in SREMO, Symbolic Register Transducers (SRT), whose 
main feature is that it supports relations between multiple events in a pattern. SRT 
also have the ability to mark exactly those simple events comprising a complex one. 

• We show that SRT are closed under the most common operators, i.e., union, 
intersection, concatenation and Kleene-star. Moreover, we show that, by using 
windows, SRT are closed under complement and determinization. Windows are an 
indispensable operator in CER because, among others, they limit the search space 
for pattern matching. 

• We implement a CER engine with SRT at its core and present relevant experimental 
results. Our engine is both more efficient than other engines and supports a language 
that is more expressive than that of other systems. 

 

2.2.1 Symbolic Register Transducers 

We start by presenting a language for CER and discuss its semantics. The main feature of 
this language is that it allows for most of the common CER operators (such as selection, 
sequence, disjunction and iteration), without imposing restrictions on how they may be used 
and nested. Our proposed language can also accommodate n-ary conditions, i.e., we can 
impose constraints on the patterns which relate multiple events of a stream, e.g., that the 
number of tumour cells at the current timepoint is higher than their number at the previous 
timepoint. We also discuss the semantics of patterns written in the proposed language and 
show that these are well-defined. Hence, in order to know whether a given stream contains 
complex events corresponding to a given pattern, we do not need to resort to a procedural 
computational model. The semantics of the language may be studied independently of the 
chosen computational model. This feature is critical, as it allows for a systematic 
understanding of the use of operators. Additionally, it could be of importance for optimization, 
which often relies on pattern re-writing, assuming that we can know when two patterns are 
equivalent without actually having to run their computational models. 

We extend the work presented in [23], where the notion of regular expressions with memory 
(REM) was introduced. These regular expressions can store some terminal symbols, in order 
to compare them later (in a string) against a new input element for (in)equality. The 
corresponding automata compiled from REM need to be equipped with registers. Each 
transition has the option to write the symbol that triggered it to some register. Transitions 
can also access registers to retrieve their contents (previously stored elements) and 



 
 
 
 
 

D4.1 Initial Report on Complex Event Forecasting, Learning and 
Analytics 
Version 1.0 
 
 

 

24 

 

compare them with the last element read by the automaton's head. One important limitation 
of REM with respect to CER is that they can handle only (in)equality relations. In this section, 
we extend REM so as to endow them with the capacity to use relations from ``arbitrary'' 
structures. We call these extended REM Symbolic Regular Expressions with Memory and 
Output (SREMO). 

We assume that each terminal expression of a SREMO is a Boolean expression whose 
predicates are in the form of a relation 𝑃. We also assume that all possible input events 
constitute a universe 𝑈. We can then extend the terminology of classical regular expressions 

to define characters, strings and languages. Elements of 𝑈 are called characters and finite 
sequences of characters are called strings. A set of strings 𝐿 constructed from elements of 

𝑈, i.e., 𝐿 ⊆  𝑈∗ , is called a language over 𝑈. Then, a stream 𝑆 is an infinite sequence 𝑆 =
 𝑡1, 𝑡2, … where each 𝑡𝑖 ∈ 𝑈 is a character. By S1..k we denote the sub-string of 𝑆 composed 
of the first 𝑘 elements of 𝑆. 𝑆𝑚..𝑘 denotes the slice of 𝑆 starting from the m-th and ending at 

the k-th element. We can then define n-ary relations 𝑃 on the elements of 𝑈 and use these 
relations, or combinations of them via Boolean connectives, as terminal expressions within 
a regular expression. The arguments of 𝑃 refer either to the most recently read element of a 
string or to preceding elements, assumed to have been stored in registers. We call such 
terminal expressions “conditions”. Conditions are the basic building blocks of SREMO. In the 
simplest case, they are applied to single events and act as filters. In the general case, we 
need them to be applied to multiple events, some of which may be stored to registers. 
Conditions will essentially be the n-ary guards on the transitions of SRT. 

We can now define SREMO, by combining conditions via the standard regular operators. 
Conditions act as terminal expressions, i.e., the base case upon which we construct more 
complex expressions. Each condition may be accompanied by a register variable, indicating 
that an event satisfying the condition must be written to that register. It may also be 
accompanied by an output, either •, indicating that the event must be marked as being part 
of the complex event, or ʘ, indicating that the event is irrelevant and should be excluded 
from any detected complex events. 

A SREMO is inductively defined as follows: 

• If φ is a condition and 𝑜 an output, then 𝜑 ↑ 𝑜 is a SREMO. 

• If φ is a condition, 𝑜 an output and 𝑟𝑖 a register variable, then 𝜑 ↑ 𝑜 ↓  𝑟𝑖   is a SREMO.  

• If 𝑒1 and 𝑒2 are SREMO, then 𝑒1 +  𝑒2 is also a SREMO.  

• If 𝑒1 and 𝑒2 are SREMO, then 𝑒1;  𝑒2  is also a SREMO.  

• If 𝑒 is a SREMO, then 𝑒∗ is also a SREMO. 

In order to capture SREMO, we propose Symbolic Register Transducers (SRT), an 
automaton model equipped with memory, logical conditions on its transitions and a single 
output on every transition. The basic idea is the following. We add a set of registers 𝑅 to an 
automaton in order to be able to store events from the stream that will be used later in n-ary 
formulas. Each register can store at most one event. In order to evaluate whether to follow 
a transition or not, each transition is equipped with a guard, in the form of a Boolean formula. 
If the formula evaluates to TRUE, then the transition is followed. Since a formula might be 
n-ary, with 𝑛 ≥ 1, the values passed to its arguments during evaluation may be either the 
current event or the contents of some registers, i.e., some past events. In other words, the 
transition is also equipped with a register selection. Before evaluation, the automaton reads 
the contents of the required registers, passes them as arguments to the formula and the 
formula is evaluated. Additionally, if, during a run of the automaton, a transition is followed, 
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then the transition has the option to write the event that triggered it to some of the 
automaton's registers. These are called its write registers 𝑊, i.e., the registers whose 
contents may be changed by the transition. Finally, each transition, when followed, produces 
an output, either ʘ, denoting that the event is not part of the match for the pattern that the 
SRT tries to capture, or •, denoting that the event is part of the match.  

 

2.2.2 Experimental results 

We have implemented a SRT-based CER engine by extending Wayeb5. We present our 
implementation and experimental results. We present experimental results by comparing 
Wayeb against other state-of-the-art CER systems. Our goal is to test the systems with 
expressive, relational patterns, i.e., with patterns which can relate multiple events. For this 
reason, we had to exclude systems that cannot express relational patterns, such as CORE 
and previous versions of Wayeb. For some other systems, there is no publicly available 
implementation or the implementation is no longer maintained (e.g., CRS and Cayuga). Yet 
some other systems (e.g., TESLA) suffer from low performance for certain classes of queries 
[24]. 

Our comparison thus includes SASE v1.0  [25], Esper v8.7.0 [26] and FlinkCEP v1.16.1 [27]. 
All these engines are written in Java. Wayeb is implemented in Scala 2.12.10. All 
experiments were run on a 64-bit Linux machine with AMD EPYC 7543 × 126 processors 
and 400 GB of memory. We used Java 1.8 for all systems. All experiments for all systems 
were run as single-core applications. 

As a basis for our experiments, we used the benchmark suite presented in [24]6. The suite 
contains three datasets: a) stock market data from a single day (224,473 input events); b) 
plug measurements from smart homes (1,000,000 input events) and c) taxi trips from the 
city of New York (585,762 input events). For the stock market dataset, each input event is a 
BUY or SELL event, containing the name of the company, the price of the stock, the volume 
of the transaction and its timestamp. For the smart homes dataset, each input event is a 
LOAD event, containing a load value in Watts, a household id, a plug id and a timestamp. 
For the taxis dataset, each input event is a TRIP event, containing the datetime of the pickup 
and dropoff, the zone of the pickup and dropoff, the trip distance and duration, the fare 
amount, the tip amount, etc. 

Since windows are ubiquitous in CER (for performance issues), we decided to focus on 
windowed SREMO in our experiments. We also fixed the selection strategy to skip-till-any, 
since this is the most demanding strategy, both in terms of time and space complexity. For 
all experiments described here, we have made sure that all engines produce the same 
results for each pattern. 

The benchmark suite runs each experiment, i.e., each combination of engine, pattern and 
window size, 3 times. We report the average throughput and memory footprint. Throughput 
is measured in terms of (input) events processed per second, whereas memory is measured 
in terms of used memory (MB). For each run, multiple memory measurements are taken, 
one every 10.000 input events. Before the measurement, the garbage collector is explicitly 
called. We report the average of those memory measurements. The time we use to calculate 

 

5 https://github.com/ElAlev/Wayeb  
6 https://github.com/CORE-cer/CORE-experiments  

https://github.com/ElAlev/Wayeb
https://github.com/CORE-cer/CORE-experiments
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throughput includes both the time required to process input events (update the state(s) of 
the automaton, create new runs, discard old ones, etc.) and the time required to report any 
complex events. However, we have slightly modified the notion of “reporting a complex 
event”. Instead of writing it in a file/database (a system-dependent, expensive operation), 
we perform (for all systems) a simple arithmetic operation on the timestamps of its 
constituent simple events. 

 

Our first set of experiments is focused on sequential patterns. We begin with patterns of the 
following form: 

𝑠𝑒𝑞3 ≔ ((𝜑1(~) ↑ ∙ ↓  𝑟1 ); ( 𝜑2(~) ↑ ∙); (𝜑3(~, 𝑟1) ↑ ∙))[1..𝑤] 

where w is the window size and 𝜑𝑖 all contain “local” constraints, i.e., conditions applied to 

the single, most recently read event, while 𝜑3 relates the most recently read input event with 
the event that triggered 𝜑1. For each such pattern, we run experiments for variable pattern 

“length”. We say that the length of the Pattern 𝑠𝑒𝑞3 is 3 because it is composed of 3 terminal 
sub-expressions. We can increase the length of the pattern by adding more such 
expressions.  In our experiments we have used patterns of length 3, 6, 9 and 12. 

Figure 6 presents throughput results for the aforementioned sequential patterns and for all 
datasets. Wayeb and Esper stand out clearly as the most efficient engines in terms of 
throughput. Wayeb also has a significant advantage over Esper in most experiments and a 
slight advantage for the smart homes dataset. For example, Wayeb is almost 2.5 times as 
efficient as Esper for the taxis dataset. Wayeb has a slightly better performance than Esper, 
its main competitor in terms of throughput. In general, we see that the performance is 
relatively stable as a function of pattern length for all systems. 

 

Figure 6 Throughput for sequential patterns with n-ary predicates as a function of 
pattern length. Window sizes are wstock = 500, wsmart = 5, wtaxi = 100 

 

In the next set of experiments, we investigated the behaviour of all systems for increasing 
window sizes. For each dataset, we increased the window size up to the point where 
throughput exhibits a significant drop. Figure 7 shows the relevant results. Wayeb again 
exhibits the best performance in terms of throughput, followed by Esper. All systems exhibit 
a throughput deterioration as the window size increases. This implies that the window size 
is more factor in determining the number of created runs than pattern length. 

 

×
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Figure 7 Throughput for sequential patterns with n-ary predicates as a function of 
window size. Pattern length is 3 

In the last set of experiments, we used the stock market dataset and tested all engines 
against patterns with various operators. We considered a diverse range of patterns, where 
other operators like disjunction, iteration and their combination were employed. In particular, 
we tested 5 patterns: 𝑞1) A sequential pattern starting and ending with a SELL event, and 
with two BUY events in between; 𝑞2) same as 𝑞1, but with local thresholds on price; 𝑞3) same 

as 𝑞1, but now includes disjunction; 𝑞4) same as 𝑞3, but with local thresholds on price; 𝑞5) 
combining iteration and disjunction.  

 

SASE can only support SREMO 𝑞1 and 𝑞2. Therefore, we do not show SASE results for 
SREMO 𝑞3, 𝑞4 and 𝑞5. FlinkCEP supports all 5 patterns, but its semantics of the iteration 
operator are ambiguous and its results when using iteration do not match those of the other 
systems. Therefore, we do not show FlinkCEP results for SREMO 𝑞5. 

 

The relevant results are shown in Figure 8. Wayeb has the highest throughput for all 
patterns, followed by Esper. The performance for 𝑞2 is higher than that for 𝑞1, due to the 

presence of extra threshold filters which prune several runs. On the other hand, 𝑞3 is the 
most demanding one, because it does not have any threshold filters and it includes 
disjunction, thus leading to more runs being created. 𝑞4 rebounds to higher throughput 
figures, due to the inclusion of filters. For 𝑞5, Esper has its lowest performance and Wayeb 
its second lowest, due to the presence of both iteration and disjunction. 

 

Figure 8 Throughput for patterns with n-ary predicates and various operators.  

w = 1000 
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2.3  Complex Event Recognition with Allen Relations 

Contemporary CER applications require the processing of large, high-velocity streams of 
symbolic events derived from sensor data, in order to detect and report the satisfaction of 
complex event patterns with minimal latency. In maritime situational awareness, e.g., a CER 
system consumes streams of vessel position signals, in order to detect instances of 
dangerous, suspicious and illegal vessel activities in real time, thus supporting safe shipping 
[28]. The target activities of a CER system, such as illegal fishing, are typically durative, and 
thus should be expressed using temporal intervals. Moreover, the use of Allen’s Interval 
Algebra has proven quintessential for CER [29] [30]. Allen’s algebra specifies thirteen jointly 
exhaustive and pairwise disjoint relations among intervals [31]. Consider, e.g., the detection 
of the vessel activity ‘disappeared in area’, where a vessel may be attempting to conceal 
illegal activities in a certain area, such as fishing in fisheries restricted areas, by stopping 
transmitting its position. This phenomenon can be expressed with the ‘meets’ relation of 
Allen’s algebra, while it cannot be captured by common interval operators, such as union 
and intersection. 

 

The Event Calculus is a logic programming formalism for representing and reasoning about 
events and their effects over time [32]. The Event Calculus exhibits a formal, declarative 
semantics, while supporting non-monotonic reasoning with background knowledge, 
relational events and hierarchical event patterns. These types of temporal specifications are 
commonly required in CER [10]. The “Run-Time Event Calculus” (RTEC) is a formal, logic-
based computational framework for online CER [33]. RTEC includes optimisation 
techniques, like windowing, allowing for highly efficient reasoning in CER applications. We 
proposed RTECA, an extension of RTEC that supports the relations of Allen’s interval algebra 
in complex event patterns.  

In order to express complex event patterns with Allen relations, RTECA supports logic 
programming rules with head ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝐹 = 𝑉, 𝐼), expressing that a fluent 𝐹 has value 𝑉 in 
the maximal intervals of list 𝐼. We use a fluent-value pair (FVP), such as 𝐹 = 𝑉, to denote a 

complex event. In order to incorporate Allen relations, the rules with head ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝐹 = 𝑉, 𝐼) 
may contain body predicates in the form of 𝑎𝑙𝑙𝑒𝑛(𝑟𝑒𝑙, 𝑆, 𝑇, 𝑜𝑢𝑡𝑀𝑜𝑑𝑒, 𝐼), where 𝑟𝑒𝑙 denotes an 

Allen relation, 𝑆 and 𝑇 are input lists of maximal intervals, 𝑜𝑢𝑡𝑀𝑜𝑑𝑒 expresses how we should 
treat the interval pairs (𝑖𝑠, 𝑖𝑡) satisfying 𝑟𝑒𝑙, where 𝑖𝑠 ∈ 𝑆 and 𝑖𝑡 ∈ 𝑇, and 𝐼 is the output list of 
maximal intervals. Consider the following example rule: 

ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑𝐼𝑛𝐴𝑟𝑒𝑎(𝑉𝑙, 𝐴𝑇) = 𝑡𝑟𝑢𝑒, 𝐼𝑑𝑖𝑎) ← 

      ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝑤𝑖𝑡ℎ𝑖𝑛𝐴𝑟𝑒𝑎(𝑉𝑙, 𝐴𝑇) = 𝑡𝑟𝑢𝑒, 𝑆),   

      ℎ𝑜𝑙𝑑𝑠𝐹𝑜𝑟(𝑔𝑎𝑝(𝑉𝑙) = 𝑓𝑎𝑟𝐹𝑟𝑜𝑚𝑃𝑜𝑟𝑡𝑠, 𝑇), 

      𝑎𝑙𝑙𝑒𝑛(𝑚𝑒𝑒𝑡𝑠, 𝑆, 𝑇, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝐼𝑑𝑖𝑎). 

𝑑𝑖𝑠𝑎𝑝𝑝𝑒𝑎𝑟𝑒𝑑𝐼𝑛𝐴𝑟𝑒𝑎(𝑉𝑙, 𝐴𝑇) = 𝑡𝑟𝑢𝑒 is an FVP expressing the intervals 𝐼𝑑𝑖𝑎 during which 

vessel 𝑉𝑙 stopped transmitting its position while in an area of type 𝐴𝑇. The first two conditions 
of the above rule express that 𝑉𝑙 is within an area of type 𝐴𝑇 in the intervals of list 𝑆 and that 
𝑉𝑙 has stopped transmitting its position while being in the open sea in the intervals of list 𝑇. 
The last condition of the rule expresses the meets Allen relation. 
𝑎𝑙𝑙𝑒𝑛(𝑚𝑒𝑒𝑡𝑠, 𝑆, 𝑇, 𝑡𝑎𝑟𝑔𝑒𝑡, 𝐼𝑑𝑖𝑎) states that from the interval pairs (𝑖𝑠 , 𝑖𝑡) satisfying meets, 
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where 𝑖𝑠 ∈ 𝑆 and 𝑖𝑡 ∈ 𝑇 , we will keep in the output list 𝐼𝑑𝑖𝑎 the “target” intervals, i.e., the 

intervals of the second input list 𝑇. Therefore, a vessel 𝑉𝑙 is said to disappear in an area of 
type 𝐴𝑇 during an interval 𝑖𝑑𝑖𝑎 , if 𝑖𝑑𝑖𝑎 is an interval during which 𝑔𝑎𝑝(𝑉𝑙) = 𝑓𝑎𝑟𝐹𝑟𝑜𝑚𝑃𝑜𝑟𝑡𝑠, 

i.e., 𝑉𝑙 stopped transmitting its position while being in the open sea, and 𝑖𝑑𝑖𝑎 is met by an 
interval during which 𝑉𝑙 was within an area of type 𝐴𝑇.  

We describe RTECA in [34], where we outline the syntax, semantics and reasoning 
algorithms of RTECA, demonstrating their correctness and linear-time complexity. Moreover, 
we present an extensive, reproducible empirical comparison of our approach with two state-
of-the-art systems supporting Allen relations on real maritime data. Our comparison 
demonstrates that RTECA is at least one order of magnitude more efficient than the state of 
the art. 

 

2.4 Components for Critical Maritime Event Forecasting and 
Resolution 

Two distinct components for forecasting and resolving critical complex maritime events are 
being developed by Kpler for the Maritime Use Case: 

1. MAR_1: Collision forecasting and rerouting 
2. MAR_2: Hazardous weather routing 

 

2.4.1 MAR_1: Collision forecasting and rerouting 

In 2020 alone 2632 accidents occurred in European Waters according to European Maritime 
Safety Agency. In CREXDATA, Kpler aims to increase maritime safety by developing 
components and tools for the early forecasting of critical maritime events and for the 
automation of the decision-making process for resolving critical situations at sea. Kpler has 
already developed an approach for vessel collision forecasting that is integrated with the 
distributed system architecture based on the Akka processing engine  [35]. In CREXDATA, 
in the context of the Maritime Use Case, Kpler develops a solution for vessel collision 
avoidance for manned and unmanned vessels.  

The vessel collision avoidance solution is based on the Frenet Frame Optimal Trajectory 
Generation algorithm. The algorithm is advantageous for solving dynamic routing problems 
in motion planning in complex environments, for robotics, autonomous vehicles and maritime 
navigation. 

The Frenét Frame Optimal Trajectory Generation algorithm addresses the dynamic routing 
problem by offering an optimal control-based solution for motion planning. It features a 
reactive collision avoidance algorithm suited for complex dynamic environments and 
manages long-term objectives such as velocity keeping, route keeping, and stopping, while 
considering vessel-specific parameters [36]. Additionally, the COLREGs (International 
Regulations for Preventing Collisions at Sea) are integrated with the collision avoidance 
algorithm, so that the algorithm produces COLREG-compliant path planning solutions. 
Specifically, the integration of COLREG involves modeling and incorporating vessel safety 
zones, detecting vessel-to-vessel interaction cases, and filtering out non-COLREG 
compliant trajectories during the trajectory generation process (Figure 9). 
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Figure 9: Left: COLREG regions for vessel-to-vessel interaction classification [37]. 
Right: Optimal path planning and velocity adaption of a vessel with green being the 

final COLREG compliant optimal trajectory generated in each subsequent 
replanning step, black the COLREG compliant valid trajectories, and gray the invalid 

alternatives in each replanning step t. Image adapted from [36] 

Figure 10 presents the workflow of the vessel collision avoidance algorithm. Figure 11 
presents an example output of the collision avoidance algorithm given two vessels that are 
forecasted to collide head on at the detected collision position. First, the collision detection 
data [35] is ingested from the Redis database, the CREXDATA platform (simulated collision 
events for the simulator tools and the interactive simulation scenarios) and the autonomous 
vessel (sea trial). The input includes the information on the collision detection event and 
vessel specific dynamic and static information. 

Subsequently, the type of COLREG interaction is identified according to the interacting 
vessel speeds and courses. Finally, the compliant trajectories are identified by the frenet 
path planning algorithm.  

 

Figure 10: Vessel collision avoidance workflow 
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Figure 11: Example of a head on collision and the generated COLREG compliant 
collision avoidance path 

 

2.4.2 MAR_2: Hazardous weather routing 

Collective vessel fleet intelligence involves using historical weather data and weather 
forecasts with historical mobility information to address routing challenges in critical sea 
weather events. In the context of the Maritime Use Case, Kpler develops a hazardous 
weather routing solution for manned and unmanned vessels. The hazardous weather routing 
solution for vessels sailing around the world holds immense significance, particularly in the 
context of international vessel traffic, safety, and the minimization of route disruptions that 
impact the global supply chain. Extreme weather events, which are becoming increasingly 
frequent and severe due to climate change, pose significant risks to maritime operations. 
Maritime traffic routes are vital for the trade of oil, liquefied natural gas (LNG), and other 
essential commodities. For example, ports along the Gulf of Mexico and the US East Coast, 
such as Corpus Christi, Houston, and Beaumont, are crucial hubs for the export of these 
resources to European markets. Disruptions along these routes due to hazardous weather 
conditions can have far-reaching consequences (see: Figure 12 and Figure 13). 
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Figure 12: Visualization of the 2022 hurricane events (their paths) along the North 
Atlantic Ocean 

 

Figure 13: a) Disruption of maritime traffic caused by Storm Ciarán that severely 
affected parts of Europe and the North Atlantic from late October to early November 

2023. b) Comparison with the 6.11.2023, after the storm has calmed under normal 
weather conditions. Heatmap visualizes the wave height – direction. Different vessel 

types sailing in the area are visualized as triangles with colours indicating the 
different vessel type 

The weather routing approach entails modeling the sea space between origin-destination 
locations using the H3 hexagonal geospatial index (h3geo.org) [38]. The H3 index resolves 
the sea area into a grid. Each H3 cell (hex size: 5) of the index forms a node and is 
interconnected with edges to each neighboring cell. This forms a high-resolution graph with 
nodes and edges with uniform index size that fully covers the entire globe, and which can 
be used as the solution space for the hazardous weather routing algorithm. 

file:///C:/Users/adeli/Dropbox/Deliverable%20D8.1/CREXDATA/h3geo.org
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Subsequently an ETL process has been built in Airflow for the weather data and forecast 
extraction, fusion with the H3 grid and scaling transformation. The ETL process extracts 
weather data from NOAA (wind data) and from Copernicus (wave and currents data), 
standardizes it into a uniform format and fuses it with the H3 grid.  

The resolution of the weather features is lower than the resolution of the H3 grid. Thus, it is 
important to map the respective weather features accurately across the entire H3 grid fill the 
missing areas accordingly. The mapping of the weather features on the H3 index is facilitated 
with following steps and is visualized in Figure 14: 

1. Weather features are mapped directly into their corresponding H3 cells. (purple cells: 
1st level) 

2. 2nd level neighbouring (green) cells are assigned with the value from the 1st level cells 
3. 3rd level red cells are assigned the average of the respective H3 2nd level neighbours  
4. 4th level yellow cells are assigned with the neighbouring average values. 

 

 

Figure 14: Mapping of weather features on the H3 index (example for NOAA wind 
dataset) 

It is important to note that the three weather datasets for wind, waves and currents have 
different recording intervals. NOAA provides wind data every six hours with hourly datasets, 
Copernicus supplies wave data twice a day (dividing the day in half) with three-hourly 
datasets and offers currents data once a day with hourly datasets. The data extraction is 
scheduled to run daily, executing various batch jobs that automate and periodically perform 
the specified tasks and updates to the current weather databases used for hazardous 
weather routing (see Figure 15). 
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Figure 15: Download and fusion process of weather data from NOAA and 
Copernicus (Task groups) 

Additionally, a statistical data extraction of historical weather data is performed on data from 
September 2022. Statistics for wind and currents are generated by calculating the 
magnitudes for the wind and currents, according to the respective official scales for 
categorizing the intensity of weather features. Subsequently, the weather data is scaled 
across the entire area by utilizing the minimum and maximum values from the statistical 
extraction (see Figure 16).  

 

Figure 16: Statistics extraction and weather forecasts scale categorization process 
step for each weather parameter. Example showcases the task groups for days 0 

(current) to 3 (Total task groups reach up to day 9) 

The solution leverages historical AIS data fused with the historical weather data and weather 
forecasts. Based on the statistical weather analysis and scaling, weights along the edges 
across the different H3 nodes are generated. These weights are treated as functions of the 
forecasted changing weather conditions, leading to the generation of updated and safe 
vessel routes toward the destination. The final implemented routing solution is graph-based 
and employs the A* algorithm for the route definition. The implemented approach for the 
hazardous weather routing solution is presented in Figure 17. 
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Figure 17: Hazardous weather routing methodological workflow 

Initial evaluation results for the hazardous weather routing component are presented in 
Chapter 5 Maritime Use Case in Deliverable 2.2. 
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3 Interactive Learning for Simulation Exploration 

In this section we present our work in the scope of “T4.2 Interactive learning for simulations 
exploration”. The main objectives of T4.2 are: 

• Develop algorithms for guiding large-scale simulations towards desired ends. 

• Simulate course corrections and adaptations to a changing environment. 

• Avoid exhaustive search of the solution space by incorporating faster and effective 
solutions. 

• Promote interactive learning to allow users to be more active in guiding the 
simulations. 
 

In the first half of the project, we focused on defining the interactive learning and simulations 
exploration scenarios for each use-case of CREXDATA. Having the simulators in place (see 
D2.2), we examined what would be relevant and useful for the end-users, given the 
interactive learning possibilities that each simulator and use-case definition provides. 

In the following, for each use-case, we briefly describe the simulators used and focus on the 
T4.2’s perspective regarding the parameters that are calibrated and explored. Also, we 
define several scenarios and outline the methods that are going to be used for simulations 
exploration, as well as for aiding the end-users in an interactive learning manner. 

  

3.1 Emergency Use-Case 

In the first half of the CREXDATA project, a focus was set in the weather induced Emergency 
Case (EmCase) to “weather related simulation” (cf. [ D2.1, p.28]). MIKE+ was selected as a 
simulator engine (see details in D2.2). The software is available with a research license, 
offering an API to invoke simulation runs and access output results. It is a representative 
sample of similar simulators, also preparing for different natural phenomena like forest fires. 
Specific use cases cover the three use case types of prediction, calibration and optimization.  

The conceptual software architecture (see Figure 18) for the integration of MIKE+ covers 
the KAFKA-based interface between the CREXDATA system including the T4.2 component, 
ARGOS as a kind of mediator system invoking simulations and pushing simulation results, 
as well as a sample deployment of MIKE+ extended by a batch process. This batch process 
starts a simulation run, uniquely identified by a simID, converts output results from DFS 
formats to T4.2 format, and merges all relevant result packages. The software packages 
MIKE+ Py and MIKE IO are used for this purpose. 

MIKE+7 manages projects through so called project (MUPP) Files, loading context data and 
parameter values from an SQLite database. From that database, further data sets like Digital 
Elevation Models (DEMs) are acquired (in that case, using SpatiaLite). Simulations are run 

 

7 URL https://manuals.mikepoweredbydhi.help//latest/Cities/MIKE_Plus_Model_Manager.pdf for 
general and esp. network modelling including results specifications, URL 
https://manuals.mikepoweredbydhi.help//latest/Cities/MIKE_Plus_2DOverland.pdf for 2D overland 
modelling including results specification, last access 20.05.2024 

https://github.com/DHI/mikepluspy
https://github.com/DHI/mikeio
https://manuals.mikepoweredbydhi.help/latest/Cities/MIKE_Plus_Model_Manager.pdf
https://manuals.mikepoweredbydhi.help/latest/Cities/MIKE_Plus_2DOverland.pdf
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based on data for three types of parameters: context data (see Figure 19), configuration 
settings and input data. 

 

 

Figure 18: Adoption of the simulator architecture [D2.1] 

3.1.1 Input parameters and data 

Simulations are conducted based on context data which mainly subsume 

• 2D overland (grid/raster data): 

o Geographical information setting references to world coordinates (e.g., by 

lat-lon coordinates of the south-western edge). 

o Bathymetry resp. Digital Terrain Model (DTM) which indicates the surface 

level (in case of rivers, lakes and oceans below water). 

o Digital Surface Model (DSM) indicating the surface that includes buildings 

etc. 

• Catchments and/or zones, breaking down the grid into areas with similar properties:  

o Buildings 

o Streets 

o Lawns etc. (e.g., by layer of land cover) 

• Collection network system (sewage system) 

o nodes (manholes, outlets and basins): defined by coordinates, type, 

diameter, ground and bottom level etc.; specified by, e.g., max. and min. 

infiltration rates 

o circular pipes, defined by references to two nodes, type, height, width, 

diameter, length etc. 
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Parameters in configuration settings are assumed to be stable in general for simplification 
purposes. The latter means that, in CREXDATA use cases, they will not be changed in 
between simulation runs by decision. Exemplary configuration parameters are: 

• General parameters: 

o Temporal resolution for the simulation of output parameters like water level, 

flow velocity etc. 

o Spatial resolution of the grid (e.g., grid elements in 5 meters distance) 

o Catchments 

• Parameters stable by decision, esp. properties of catchments and/or zones 

determining, e.g., the rainfall-runoff model, which is based on temperatures and 

drought conditions of the ground (determined by meteorology, i.e., potentially 

calculated by impact assessments based on meteorological data) 

o Dampening delta depth 

o Weir coefficient 

o Initial values for the hydrodynamic variables on dryness resp. water level 

o Surface roughness, eddy viscosity etc. 

Main input data for simulations might result from sensing, especially acquired by satellites 
(grid/raster data) and weather stations (time series data), and from forecasting (typically 
grid/raster data), gathered from forecasting services running models of single- or multi-
phenomena models. Such input data refers to 

• Meteorological input data parameters – precipitation (type: rainfall and raingauge): 

main influence for flooding events, determined by intensity over time 

• Meteorological input data parameters – wind: direction and intensity 

 

Figure 19: Visualisation of an excerpt from the context data used for simulations 
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3.1.2 Output parameters 

The simulation results in output data, carrying time series for specific attributes for the grid 
and for networks8: 

• Network: nodes and pipes 

o focused in CREXDATA: total water depth (water level) 

o further parameters like discharge to surface and (optional) volume 

• Network: links 

o further parameters like flow velocity 

• Network: nodes 

o further parameters like external water level and diverted runoff to surface 

• Elements (cells) of the 2D overland grid/raster (incl. catchments) 

o focused in CREXDATA: water level 

o further parameters like volume balance and discharge (through cross-

section), U/V velocity and current speed 

 

Figure 20: Output data from a sample simulation run (executed for a duration of 4 
hours, in equal time steps of 60 seconds each) for total water depth in nodes (N11, 
N3, …) and links (L10, L2, …) in time steps 00:3:54:00 to 04:00:00 from res1d file and 

water level for grid elements in time steps 00:00:00 to 00:07:00 from dfsu/dfs2 file 

Relevant data for interactive learning scenarios (T4.2) and, potentially resulting from that, 
simulation for visualization in Augmented Reality (T5.4) subsumes both parameters in 
configuration settings and input data parameters. In general, both weather data from sensors 
as well as weather forecasts is available through ARGOS, acting as a kind of proxy to 
services like Copernicus, ECMWF, Meteostat etc.  

3.1.3 Use cases in the EmCase 

Real data is available for the city of Innsbruck, made available through an agreement 
between the CREXDATA consortium (DCNA, UPB, NCSR und TUC) and Innsbrucker 
Kanalbetriebe (IKB). IKB provided the entire context data including the sewer system and 
catchments as well as precipitation and measurement data for an extreme weather even in 

 

8 There are further options, for instance, for nodes and links (like water quality) or junctions and tanks 
(pressure, head and water demand) which are not reflected here. 
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2016 (for details see D2.2). The city of Innsbruck does not run a simulation model like MIKE+, 
so that high efforts would be required to create the initial model.  

To avoid these efforts in the first stage, sample conditions are assumed for the initial phase 
of CREXDATA9. Offline calibration would be required, in actual use, for parameters in 
configuration settings that are determined as “stable by decision” above.  

Initial Interactive Learning scenarios are presented in Table 2, encapsulated in use cases 
for T4.2. Each of these use cases refers to a specific type of Parameter Exploration 
(interventions). Relevant output describes attributes that are help in action planning and 
decision making, indicating most promising measures resp. most critical situations. For these 
attributes, historic data might be relevant (cf. Figure 18) as reference data (esp. for end 
users interacting with a T4.2 service) or training/test data (for machine learning models). We 
note that from the list of the possible scenarios, in the next half of the project we will focus 
on particular ones based on various criteria, such as the required preparatory effort, 
opportunities for further integration in other tasks, etc. 

Table 2: Overview of possible interactive learning scenarios for the EmCase. 

No. Interactive Learning 
scenarios (use cases) 

Parameter Exploration 
(interventions): modify 
configuration or input 
parameters 

Relevant output 

1 Having an unexpected 
actual total water depth in a 
node or in a link, or a water 
level in a grid element, does 
that indicate that the sewer 
network does not work as 
expected? 

Delete node (covered 
manhole), link (blocked 
pipe) or disable discharge 
through cross-section 
(between grid elements/ 
catchments) 

Actual water level 
measurements (→ find 
blockage) 

2 Where should barriers be 
set to reduce critical water 
levels within the grid or 
water depth within network 
elements? 

Elevate grid elements in the 
DSM to indicate barriers 
(e.g., by loading pre-
defined alternative grids, 
each with a prepared 
response measure) 

Find minimal average water 
level or total water volume 
in the entire grid 

3 Expecting an extreme 
weather event, which of the 
prepared risk scenarios is 
valid and, as a 
consequence, which 
management plan shall be 
activated by a decision? 

Vary precipitation over time 
 options: default 
scenarios, historic 
scenarios from ARGOS, 
alternative forecasts from 
ARGOS 

Indicate expected 
probability level (e.g., 100y 
flooding) 

 

9 Initially given by a sample project provided by DHI for MIKE+. 
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4 Is it necessary to consider 
wind situations when 
assessing impacts? 

Vary wind speed and 
direction  ARGOS 

Indicate most problematic 
wind conditions 

5 Does the forecast match 
the actual conditions in 
terms of water discharging 
to the ground or 
evaporating to the air? 

Specify possible discharge/ 
evaporation (?) relative to 
temperature/ drought  
ARGOS 

Confirm simulations with 
regard to actual/measured 
drought 

6.1 Rescuer team needs to 
move from starting point to 
a point in the emergency 
scene and must decide on 
a safe entry route 

Vary precipitation over time 
(cf. use case 3) 

Routes10 that are not (or 
least likely) flooded in any 
simulation scenario 

6.2 Rescuer team needs to 
move from a point in the 
emergency scene to a safe 
place and must decide on a 
safe rescue route11 

Vary precipitation over time 
(cf. use case 3) 

Routes that are not (or least 
likely) flooded in any 
simulation scenario 

   

3.2 Health Crisis Use-Case 

The second CREXDATA use-case is divided into two sub-use-cases, one focusing on 
multiscale simulations for the condition of the lungs of COVID19 patients, and the second 
regards an epidemiological scenario that takes into account mobility data and historical 
measurements relevant to the COVID19 pandemic.  

3.2.1 Multiscale Simulations 

This use case is based on Alya and PhysiBoSS to simulate COVID-19 dynamics in the lungs 
and airflow in the upper airways (see details in D2.1). It aims to understand varying COVID-
19 severity and optimize interventions and treatments using CREXDATA technologies. The 
process involves creating a 3D model of the upper airways, simulating infection dynamics, 
and integrating omics data into the model. The integration and analysis phase is crucial in 
this project. The simulations from Alya and PhysiBoSS will be combined to analyse the 
progression of COVID-19, providing insights into disease spread and progression in the 
lungs. These insights could inform new treatment strategies or preventive measures. 
Complex Event Forecasting is being used to predict complex events based on historical 
data, enhancing our understanding of disease progression. Furthermore, Interactive 
Learning for Simulation Exploration will allow users to interactively explore and learn from 
simulations, fostering a deeper understanding of the disease dynamics and potentially 
leading to breakthroughs in treatment approaches. The overview of our approach is shown 
in Figure 21. This phase embodies the synergy of simulation and AI in combating COVID-
19. 

 

10 requires routing service, as well as mapping of route and “road” elements in the project 
11 similar to suggesting a safe exit route to citizens, e.g., during an emergency call 
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Figure 21: (Left) A schematic of the interconnection between PhysiBoSS and Alya, 
the simulators, with the different components from the WP4 that will help with the 
calibration, the exploration and the interventions. (Right) Time-series example and 

illustration of the alternative interventions 

The simulators that will be used in this task are PhysiBoSS and Alya. PhysiBoSS is a multi-
scale agent-based modelling framework that integrates physical dimension and cell 
signalling [39, 40]. It provides a flexible and computationally efficient framework to explore 
the effect of environmental and genetic alterations of individual cells at the population level. 
PhysiBoSS is designed to bridge the critical gap from single-cell genotype to single-cell 
phenotype and emergent multicellular behaviour. It’s particularly useful when studying 
heterogeneous population response to treatment, mutation effects, different modes of 
invasion or isomorphic morphogenesis events.  

On the other hand, Alya is a high-performance computational mechanics code designed to 
solve complex coupled multi-physics/multi-scale/multi-domain problems, which are mostly 
coming from the engineering realm [40]. It solves a variety of physics including 
incompressible/compressible flows, non-linear solid mechanics, chemistry, particle 
transport, heat transfer, turbulence modelling, electrical propagation, and more. Alya was 
specially designed for massively parallel supercomputers, and the parallelization embraces 
four levels of the computer hierarchy. It’s used in a variety of engineering simulations and is 
part of the Unified European Applications Benchmark Suite. 

In this project, we will perform grid search for the estimation of simulator parameter values, 
coupled with ETSC algorithms for the timely recognition of non-relevant ones. The non-
relevant simulation instances will then be prematurely terminated before their completion 
and thus save computational time and resources and speed-up the whole calibration 
process. These parameters include the initial concentration of oxygen, the number of virions 
arriving at the alveoli, and the state of the alveoli (represented by the percentage of healthy 
cells in the simulation). The calibration of these parameters is crucial as it influences the 
accuracy of the simulations and the subsequent analysis. By fine-tuning these parameters, 
we aim to create a more precise and representative model of COVID-19 progression, which 
in turn can lead to more effective treatment strategies. 

Likewise, Interactive Learning interventions will be crucial in optimizing three key aspects of 
COVID-19 treatment. Firstly, we aim to determine the optimal timing for the delivery of 
mechanical oxygen support. This is critical in ensuring patients receive necessary support 



 
 
 
 
 

D4.1 Initial Report on Complex Event Forecasting, Learning and 
Analytics 
Version 1.0 
 
 

 

43 

 

at the most beneficial time. Secondly, we will identify the ideal time for drug delivery, which 
could significantly impact the effectiveness of the treatment. Lastly, we will ascertain the 
optimal drug concentration, balancing efficacy and potential side effects. These interventions 
aim to personalize and enhance COVID-19 treatment, potentially improving patient 
outcomes by leveraging different AI tools developed in CREXDATA. For instance, we will 
continue our work in analysing simulation results using online data and different optimization 
methods, such as Genetic Algorithms, and Covariance Matrix Adaptation [41] [42]. 

3.2.2 Epidemiological Scenario 

For the Epidemiological Scenario, we will use the MMCACovid19 to simulate the 
spatiotemporal patterns of COVID-19 progression during the pandemic in Spain. The 
Epidemiological Scenario is divided into two problems that aim to be solved by integrating 
different CREXDATA technologies. The first problem is the calibration of epidemiological 
and population parameters to define a reference model for simulating the spread of COVID-
19 in Spain. In the second problem, we will use the calibrated model to evaluate different 
interventions to reduce the epidemic’s impact, including i) designing confinement strategies, 
ranging from national-level lockdowns to region-specific restrictions, and ii) assessing the 
effectiveness of various vaccination strategies. 

The MMCACovid19-vac is a software package for simulating the spread of infectious 
diseases in a metapopulation, considering different types of agents (e.g., various age 
groups), their interactions, and daily mobility patterns. The simulator relies on the 
Microscopic Markov Chain Approach, with more details available in D2.2. The simulator will 
be integrated into a model exploration workflow designed to characterize large parameter 
spaces. Figure 22 illustrates the different components of the workflow, including the 
simulator, the model exploration component, the algorithms used for parameter exploration, 
and the interactions between these components. Additionally, the workflow establishes a 
common architecture that will be used to address various scenarios. More details about the 
model exploration workflow can be found in D2.2. 

 
Figure 22: Model exploration workflow for the epidemiological scenario 

As mentioned, this use case includes two scenarios: i) the calibration of epidemiological 
parameters; and ii) the design of effective interventions to control the disease spread. The 
calibration of parameters consists of finding parameters that when plugged into the model 
the simulation reproduced the observed pattern in the number of new COVID-19 cases, 
hospitalizations and fatalities for different age groups and different regions.  
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We first focused on a subset of epidemiological parameters described in Table 3 which 
includes a brief description and the type of data. In this stage of the project, we have focused 
on calibrating a subset of epidemiological parameters rows (highlighted in grey).  The 
calibration process values incorporate real-world data which is used to guide the parameter 
search. For this, we have collected a comprehensive dataset that includes COVID-19 reports 
that include new cases, fatalities and hospitalizations reported daily and weekly at different 
levels of spatial resolution (e.g. country-level, provinces, municipalities) together with phone-
based anonymized daily mobility data. 

Table 3: Epidemiological parameters of the MMCACovid19-vac infectious model 

Parameters  Description Data Type 

βᴵ Infectivity of symptomatic (S → E) scalar (float) 

βᴬ Infectivity of asymptomatic (S→ E) scalar (float) 

ηᵍ Exposed (E)  rate for each age group vector float (1xg) 

αᵍ Asymptomatic (A) infectious rate for each age group vector float (1xg) 

μᵍ Infectious (I) rate for each age group vector float (1xg) 

θᵍ Direct death probability ( I → PD) vector float (1xg) 

γᵍ ICU probability ( I → PH) vector float (1xg) 

ζᵍ Pre-deceased (PD) rate vector float (1xg) 

λᵍ Pre-hospitalized (PH) in ICU rate vector float (1xg) 

ωᵍ Fatality probability in ICU (PH → HD) vector float (1xg) 

ψᵍ Death (HD) rate in ICU for each age group vector float (1xg) 

χᵍ ICU (HR) discharge rate for each age group vector float (1xg) 

To guide the calibration of parameters, we are currently using various optimization and 
machine learning techniques, including Genetic Algorithms (GA) and Covariance Matrix 
Adaptation (CMA). Additionally, we are employing approaches such as active and interactive 
learning combined with visual analytics to improve the characterization of the parameter 
space.  

Specifically, we are developing a workflow that identifies candidate parameters, and the 
simulations produced by these parameters are analysed using visual analytic techniques. 
This allows expert users to identify the most relevant parameter sets and discard those that 
initially seemed promising but, upon deeper analysis, reveal inconsistencies when compared 
against real-world data. We are also evaluating the use of Federated Learning to perform 
Approximate Bayesian Computation in a federated manner, aiming to learn the posterior 
distribution of parameters in context when different users are interested in learning 
parameters but the data used to guide the parameter exploration is sensitive and thus, 
cannot be exchanged for privacy concert. 

The second scenario will use the workflow to find effective interventions to control the spread 
of the disease in different situations. Specifically, we will focus on two types of interventions: 
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i) control measures for mobility reduction, social distancing, and household permeability, and 
ii) the introduction of vaccination campaigns using different technologies developed in the 
context of the CREXDATA project. Table 4 shows the parameters used to describe these 
interventions. 

The group of rows at the top of Table 4 describes the parameters used to model mobility 
reductions and social distancing policies. These parameters include the periods during which 
the policy is applied, scalar values to model social distance reductions for each age group, 
the permeabilities of confined households, and a time series with values for the percentage 
of mobility reduction. The group of rows at the bottom of Table 4 describes the parameters 
used to model the introduction of vaccines, including the start date of vaccination, the 
duration of the campaign, the number of vaccines provided per day, and the fraction of 
vaccines supplied to each age group. 

 

Table 4: Parameters to model the intervention to control the epidemic 

Parameters  Description Data Type 

tᶜs 
Timesteps when the containment measures will be 
applied vector (integer) 

κ₀s 
Array of level of confinement. (Decreases population 
mobility. Decreases average number of contacts. 
Increases household isolation) Time-varying 

ϕs 
Array of permeabilities of confined households. (Mixing 
among households. Decreases household isolation) vector float (1xg) 

δs 
Array of social distancing measures. (Reduces contacts of 
the non-confined population) vector float (1xg) 

% of vaccines per day % of vaccines that are supplied at each step scalar (float) 

Start vaccination The simulation step in which vaccines are supplied scalar (integer) 

Duration 
Number of simulation steps in which vaccines are 
supplied scalar (integer) 

ϵᵍ Fraction of vaccinations per age group vector float (1xg) 

 

In this scenario, we are interested in finding interventions that minimize the number of 
fatalities, ICUs as well as the peak in cases. We can also model the economic cost of 
lockdown and use this as an additional cost. In addition, for the mobility reduction 
intervention, we are planning to introduce penalties that account in the detrimental impact 
that mobility reduction can has on the economic activities. Moreover, we are also considering 
the use of multi-objective optimization and Pareto optimality to optimize different criteria such 
as the trade-off between the effectiveness of lockdowns and its detrimental impact in 
economic activity. 



 
 
 
 
 

D4.1 Initial Report on Complex Event Forecasting, Learning and 
Analytics 
Version 1.0 
 
 

 

46 

 

For finding effective strategies we will implement a workflow that combines optimization 
techniques, interactive learning and visual analytics in a similar way as it is done for the 
parameter calibration. Reinforcement Learning (RL) will also be considered as a solution. 

 

3.3 Maritime Use-Case 

The Maritime Use Case aims to develop solutions that enable early detection and forecasting 
of maritime events for safe maritime operations and efficient action planning and decision 
making. Based on the requirements elicitation for maritime complex critical events (D2.1), 
two components are developed focusing on the mitigation of vessel collision events and the 
avoidance of hazardous weather conditions at sea: 

1. Collision Forecasting and Rerouting  
2. Hazardous Weather Rerouting 
 
The simulator of the Maritime Use Case will allow end-user operators, to simulate vessel 
positions and events to explore and optimize vessel navigation under the collision avoidance 
and hazardous weather routing focus cases, by ingesting simulated (artificial) vessel 
positional data and by allowing end-users to assess different alternatives through the 
calibration critical operational parameters. The simulated events will be presented to the end 
users via GUI for further evaluation and testing. 

In the context of T4.2, firstly, the operational parameters for the calibration of the algorithms 
that were developed for both software components of the Maritime Use Case have been 
identified. In a second step, critical operational parameters have been selected for each 
focus case based on their significance in resolving the respective critical event. Based on 
these parameters, the specifications of the interactive learning scenarios were derived, as 
described in Table 5. To this end, we will apply the Active Learning and Optimization 
workflows, as they are described in the next section (Sec. 3.4). 

Table 5: Interactive simulation scenario specifications for the Maritime Use Case 
components 

Focus Case 
Interactive 
Learning 
Scenario 

Description 

Collision 
Forecasting and 
Rerouting 

Speed 
adjustment 

Resolve the forecasted collision detection event 
between two vessels with a different target speed 
other than the current vessel speed. In this way 
different trajectories for the collision avoidance 
may be generated and different strategies can be 
assessed by the end user operator and consider 
factors that are out of scope for the collision 
avoidance algorithm. These factors may include 
operational factors that are decisive for the 
vessel speed, speed limitations that are not 
captured by the AIS and/or any other vessel 
sensors, space limitations, the avoidance of 
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specific nearby sea areas while performing a 
collision avoidance manoeuvre etc. 

Hazardous 
Weather Routing 

Departure time 

Evaluate different strategies based on the 
departure time and the changing weather 
conditions along the route. Under certain 
circumstances that include very adverse weather 
conditions, the route towards a destination might 
be blocked for several days or the alternative 
route might not be optimal due to the significantly 
increased ETA. Waiting out for weather 
conditions to improve is a common routing 
strategy of vessels to optimize maritime 
operations, fuel consumption and operational 
efficiency 

Hazardous 
Weather Routing 

Route planning 
with and 
without 
weather 
routing 

Evaluate the effect on ETA when considering 
weather conditions in route planning. In this 
context, vessel crews and fleet managers will be 
able to quantify the effects of the hazardous 
weather routing component on the vessel ETA to 
a specific destination. This aims to improve 
understandability and support the respective 
decision makers to take informed decisions for 
optimal maritime operations. 

 
Until M18, the collision forecasting and rerouting interactive speed adjustment interactive 
simulation functions has been implemented on the frontend. The external user is able to 
review collision forecasts and simulate different COLREG compliant collision avoidance 
paths by adjusting the vessel’s target speed to a user defined value.  
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Figure 23: Vessel collision avoidance interactive simulator 

3.4 Methods for the Exploration of Simulations Parameter Space 

In this part we briefly present the algorithms that are going to be used for the purposes of 
T4.2. Apart from calibrating the simulators, recall that we also want to explore the 
effectiveness of interventions (or intervention policies) for example, at which crossroads to 
place water barriers in a city, when to apply vaccination campaigns, or how to reroute a 
vessel to reduce cruising costs. The values that parametrize the interventions, as well as 
simulator-specific configurations, form an unexplored multidimensional space of parameter 
values. T4.2 seeks to devise methods for effectively exploring such spaces and informing 
the end-user about the results in a comprehensive manner. Specifically, we will rely on (i) 
Active Learning [43] [44] for characterizing parameter spaces, (ii) Optimization [41] [42] for 
estimating the parameter values that lead to the most desired simulation outcomes, (iii) Early 
Time-series Classification [45] approaches for the early termination of non-relevant 
simulations and time-consuming simulations, and (iv) Reinforcement Learning for estimating 
effective policies for interventions. The corresponding methods are selected according to the 
requirements of each scenario. 

Active Learning 

To explore the parameter space, we will rely on an approach that incorporates Active 
Learning and has been proven effective in a similar application in the past [44]. According to 
this method, the parameter values are considered as vectors of random values, always 
within specific ranges that have been determined by domain experts. Each vector is 
evaluated by initiating simulations that are configured with the respective parameter values, 
and by assessing the simulation outcome. The assessment can either be the classification 
of a particular simulation outcome, or a well-defined score metric that encodes the quality of 
the simulation, i.e. with respect to a desired outcome, or the plausibility of the simulation. 
Note also that in some cases, as e.g. in the multiscale simulations use-case of CREXDATA, 
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the evaluation can be quite time-consuming, because of the simulator’s complexity. Thus, it 
is not realistic to perform exhaustive search. 

To that end, the method that we will adopt utilizes a Random Forest (RF) classifier to create 
a mapping of the parameter space based on some class labels. In the first algorithm iteration 
a few random input vectors are generated, and then the corresponding simulations are 
initiated. The data of these first simulation runs (e.g. vectors of parameter values coupled 
with class labels) are used to train the RF. Since the classifier is trained using only a few 
samples, we expect to have regions for which it is highly uncertain. 

By sampling the most uncertain regions and by clustering the points included therein, we 
come up with only a few points as cluster centres, which are subsequently evaluated by 
invoking again the simulator. This process is repeated until a termination criterion is met, 
e.g. we reach a maximum number of iterations. 

As the iterations progress, the RF fits better to the unexplored space, and thus when the 
algorithm terminates, we expect to have an accurate mapping of the interesting/relevant and 
non-interesting/non-relevant simulation instances. This trained model can then be 
incorporated into other workflows that are relevant to each scenario, i.e. visual analytics.  

 

Optimization 

Frequently, apart from characterizing the unexplored parameter space, it is desirable to 
obtain optimized parameter values, e.g. those that are very close to an outcome that the 
end-user seeks to obtain, or others that minimize some kind of cost. For this purpose, we 
can rely on Genetic Algorithms (GA) [41], Covariance Matrix Adaptation (CMA) [42], 
Bayesian Optimization (BO) [46], or other similar methods. 

 

Early Time-Series Classification (ETSC) 

Recall that, in some cases, the simulations might require a significant amount of time to 
complete. Also, in some scenarios (e.g. during optimization) it is highly probable that many 
non-interesting or non-relevant simulation instances will be initiated, and thus significant 
amounts of computational resources are spent in vain. To overcome this issue, we 
incorporate Early Time-Series Classification algorithms that can find the earliest time-point 
of a time-series at which a reliable prediction regarding its class label can be made. If a time-
series is predicted to belong to any of such simulations, then the corresponding simulation 
can be terminated early on in time, thus freeing up resources. 

In parallel, several ETSC methods have been proposed in the literature, however there is a 
lack of an experimental evaluation and comparison framework tailored to this domain. Also, 
empirical results illustrate that not every ETSC algorithm is suitable for all application 
domains [45]. To that end, in the context of CREXDATA we developed an open-source 
framework for evaluating ETSC algorithms,12 which contains a wide spectrum of methods 
and appropriate datasets. We also proposed a method for ETSC that relies on state-of-the-
art algorithms for full time-series classification, as this arsenal is significantly larger than the 
pure ETSC algorithms. 

 

12 https://github.com/xarakas/ETSC  

https://github.com/xarakas/ETSC
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To illustrate ETSC algorithms applicability, we performed a set of preliminary experiments, 
using data from the CRAXDATA’s Multiscale Simulations sub-use-case. Data consists of 
time-series of cell category counts throughout the course of simulations with different oxygen 
levels, that is (i) the total number of cells, (ii) the total number of Epithelial cells, (iii) the Alive 
Epithelial cells, (iv) the Apoptotic Epithelial cells, (v) the Necrotic Epithelial cells, and (vi) the 
Infected Epithelial cells. The class labels are two, (a) the patient being in a non-critical 
condition, and (b) the patient being in a critical condition. Our ultimate goal is to detect critical 
condition simulations during their course as early as possible and terminate these instances 
to free up resources to give space for the exploration of non-critical condition cases. 

To create the dataset, we performed a series of 1000 PhysiBoSS runs with different 
configuration parameters, which resulted to 356 cases of non-critical patient condition and 
to 644 of critical condition. Considering the categorization of the datasets in [45], this 
particular case is multivariate, large, and imbalanced. Taking this into account and combining 
also the results from our empirical evaluation of ETSC algorithms to other application 
domains, we recognized four of them as being the more promising with respect to ETSC-
oriented evaluation measures, such as accuracy, earliness, the harmonic mean between 
earliness and accuracy, as well as training and testing times. Average results from a 5-fold 
cross validation are shown in Figure 24. 

 

 

Figure 24: Preliminary results of the ETSC algorithms applied on the Multiscale 
Simulations CREXDATA sub-use-case 

We can see that the best accuracy, F1-score, and harmonic mean are achieved by the 
TEASER algorithm. Although ECEC’s performance is close enough for these metrics, we 
can observe that it requires significantly higher training times. ECO-K and MINI perform 
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better in terms of earliness, however their lower accuracy and F1-score values do not render 
them reliable for being applied in this case.  

 

Reinforcement Learning 

Additionally, we will develop a Reinforcement Learning (RL) approach for the 
epidemiological scenario, where an agent learns its decision-making policy by engaging with 
an environment itself. Through taking actions within the environment, the agent receives 
feedback in the form of rewards or penalties, aiding it in determining the most favourable 
actions across varying situations. This process allows the agent to iteratively improve its 
decision-making abilities. We are currently developing the different component of the RL that 
are described below. 

Environment: The external system within which the agent acts. It responds to the actions 
taken by the agent (changes states) and provides feedback in the form of rewards or 
penalties. For us, this is the MMCA-Covid19 simulations.  

State: A representation of the current situation or configuration of the environment. The 
agent perceives the state and selects actions based on it. Currently, it is not very clear how 
the States will be represented.  

Action: The decision made by the agent based on the current state. Actions can lead to 
transitions to new states and affect the rewards received. In our case, the actions correspond 
to interventions being applied or retracted.  

Reward: A numerical value provided e.g. by the environment to indicate the desirability of 
the action taken by the agent in a particular state. The goal of the agent is to maximize the 
cumulative reward over time. For us this could be a combination of the new cases, 
hospitalizations, deaths, economic impact, etc.  

Interactivity capabilities for each use-case will be investigated in the following months of 
CREXDATA, also in synergy with “T5.2 Visual Analytics for Supporting XAI”, and “T5.3 
Visual Analytics for Decision-Making Under Uncertainty”. 
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4 Federated Machine Learning 

Distributed Deep Learning (DDL) has emerged as an alternative paradigm to the traditional 
centralized approach [ [47], [48]] offering efficient handling of large-scale data across multiple 
worker-nodes, enhancing the speed of training Deep Learning (DL) models and paving the 
way scalable and resilient DL applications   [ [49] , [50], [51]].  

Similarly, Federated Machine Learning (FML) builds upon the principles of DDL but takes a 
different approach [52]: “It enables Machine Learning on distributed data by moving the 
training to the data, instead of moving the data to the training”. Thus, FML enhances privacy, 
remains compliant with data regulations, and mitigates risks associated with centralizing 
data storage.  

We will apply the algorithms described in this section to the Health Use Case and the 
Weather Emergency Use Case, as outlined in D2.1. Specifically, in the epidemiological 
scenario of the Health Use Case, the algorithms will be considered in the parameter 
calibration and optimal intervention design process. In the Weather Emergency Use Case, 
the algorithms will be considered in various sub-scenarios, such as guided data acquisition 
(EM_UC_12), object detection (EM_UC_21), and smart sensing (EM_UC_30), among 
others. 

4.1 Related Work for Distributed & Federated Learning and 
Drawbacks 

The traditional DDL methods typically proceed by some local training, followed by parallel 
sampling of local stochastic gradients at each worker. In the bulk synchronous parallel (BSP) 
approach [53], the gradients are averaged, and then each worker’s solution is updated using 
this average gradient in the Stochastic Gradient Descent (SGD) step [ [54], [55]]. However, 
a critical challenge inherent in these traditional techniques becomes evident during each 
training iteration: the aggregation of gradients of DL models — often encompassing millions 
to many billions of parameters — across workers introduces a significant communication 
bottleneck, thereby restricting system scalability [56]. This leads to a low computation-to-
communication ratio [ [57], [58]], resulting in inefficient hardware utilization. Furthermore, 
limited bandwidth in wide-area networks significantly hinders collaborative training among 
remotely connected workers [59]. Addressing the communication overhead to expedite DDL 
algorithms has been a focal point of research for several years; speeding-up SGD is arguably 
the single most impactful and transformative problem in machine learning [60]. 

In this context, strategies that aim to alleviate the communication burden can be grouped 
into two main categories: (1) communication-efficient Local-SGD, where we perform several 
local updates on workers before aggregation (e.g., Federated Averaging – FedAvg [47]), and 
(2) deployment of accelerated SGD methods in DDL, since faster convergence naturally 
translates to fewer communication rounds (e.g., FedAdam [61] extends Adam and FedAvgM 
[62] extends SGD with momentum).  

Problem formulation. Consider the distributed training of deep neural networks over 
multiple workers [ [63], [64]]. In this setting, each worker has access to its own set of training 
data, and the collective goal is to find a common model that minimizes the overall training 
loss. This scenario can be effectively modelled as a distributed parallel non-convex 
optimization problem, formulated as follows: 



 
 
 
 
 

D4.1 Initial Report on Complex Event Forecasting, Learning and 
Analytics 
Version 1.0 
 
 

 

53 

 

min 𝐹 (𝑤)𝑤∈ℝ𝑑 ≜
1

𝐾
∑ 𝐹𝑘(𝑤)

𝐾

𝑘=1

 
(1) 

Here, K is the number of workers and 𝐹𝑘(𝑤) ≜ Ε𝜁𝑘~𝐷𝑘
[𝑙𝑘(𝑤; 𝜁𝑘)]  is the local objective function 

for worker k with associated data distribution 𝐷𝑘. The local function 𝑙(𝑤; 𝜁𝑘) represents the 

loss of the data sample 𝜁𝑘 given model parameter w. 

Shortcomings in contemporary solutions. Communication-efficient DDL algorithms (e.g., 
FedAvg, FedAvgM, etc.) require predetermined and periodic round termination schedules. 
They do not consider whether training progresses in a desirable way. Thus, they often 
prescribe unnecessary synchronizations, something that makes them unsuitable for truly 
communication-constraint federated environments such as the ones encountered in the 
Weather Emergencies Use Case. 

Summary. Our work addresses critical efficiency challenges in DDL, particularly in 
communication-constraint environments, such as the ones encountered in Federated 
Learning (FL) applications. We introduce and release Functional Dynamic Averaging (FDA), 
a novel adaptive communication-efficient strategy in distributed deep learning. Our 
contributions are as follows: 

1. We propose FDA, which dynamically terminates training rounds by monitoring the 

model variance. FDA drastically reduces communication requirements, while 

ensuring cohesive progress towards the shared training objective. 

2. We extend TensorFlow, TensorFlow Distributed and KungFu [65] to support 

workflows like the ones we require for FDA (federated, and without predetermined 

operations on participating learners – truly dynamic).  

3. We evaluate and compare FDA with other DDL algorithms through an extensive suite 

of unique experiments with diverse datasets, models, and tasks, requiring over 200K 

GPU hours. This comprehensive approach significantly reduces the stochasticity 

typically associated with training DNNs, thereby enabling us to draw more definitive 

conclusions. 

4. We show that FDA effectively balances the competing demands of communication 

and computation costs, negating the need to compromise one for the benefit of the 

other - unlike the conventional trade-offs encountered in the field. 

5. We show that FDA effectively balances the competing demands of communication 

and computation costs, negating the need to compromise one for the benefit of the 

other - unlike the conventional trade-offs encountered in the field. 

6. We demonstrate that FDA outperforms traditional and contemporary FL algorithms 

by orders of magnitude in communication, while maintaining equivalent model 

performance. 

7. We show that FDA remains largely unaffected by various data heterogeneity settings, 

maintaining comparable performance to the IID case. 
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4.2 Relation to Use Cases 

The Functional Dynamic Averaging (FDA) algorithm, with its communication-efficient and 

model-agnostic nature, has significant potential across all three use cases. In the maritime 

domain, FDA enables efficient federation between distributed data sources (e.g. networks of 

sensors, ships, etc.) for forecasting hazardous situations at sea, resulting in robust and 

timely training that aids in critical decision-making without excessive data transmission.  

For weather emergency management, FDA's communication efficiency ensures that models 

can be updated at near real-time with new data from disparate locations, enabling authorities 

and first responders to proactively respond to severe weather events, thereby minimizing 

impact and accelerating recovery efforts.  

Similarly, in health crisis management, FDA supports the continuous, online analysis of 

distributed epidemic data, enabling a more rapid monitoring of epidemics and the efficacy of 

interventions, without the administrative burden of sharing data across authorities, thus 

facilitating a better management of pandemic outbreaks. 

Notably, FDA's compatibility with any scenario where model averaging is applicable 
ensures its versatility across these diverse domains (and more), promising more effective 
and cutting-edge federated learning solutions. 

4.3 Functional Dynamic Averaging 

Notation. At each time instance t, each worker k independently maintains its own set of 

model parameters, denoted as 𝑤𝑡
(𝑘)

∈ ℝ𝑑. Let Δ𝑤𝑡
(𝑘)

 be the parameter update vector [66] 

computed by some stochastic optimization algorithm (e.g., SGD, ADAM) encompassing the 
learning rate and relevant gradients. Then, in a typical distributed learning step, each worker 
k applies the following update: 

𝑤𝑡+1
(𝑘)

= 𝑤𝑡
(𝑘)

+ Δ𝑤𝑡
(𝑘)

 (2) 

For all worker-local vectors, let 𝑤𝑡 =
1

𝐾
∑ 𝑤𝑡

(𝑘)𝐾
𝑘=1  represent the average model at time t and 

𝑤𝑡0
 the initial model shared among the workers at the start of the current communication 

round. Moreover, we introduce the drift vector 𝑢𝑡
(𝑘)

, that is, the change to the local model of 

the k-th worker at time t since the beginning of the current round at time t0, and 𝑢𝑡 as the 
average drift: 

𝑢𝑡
(𝑘)

= 𝑤𝑡
(𝑘)

− 𝑤𝑡0
, 𝑢𝑡 =

1

𝐾
∑ 𝑢𝑡

(𝑘)𝐾
𝑘=1 = 𝑤𝑡 − 𝑤𝑡0

 

Model Variance. The model variance quantifies the dispersion or spread of the worker 
models around the average model. At time t, it is defined as: 

𝑉𝑎𝑟(𝑤𝑡) =
1

𝐾
∑ ||𝑤𝑡

(𝑘)
− 𝑤𝑡||

2

2
𝐾

𝑘=1

  = (
1

𝐾
∑ ||𝑢𝑡

(𝑘)
||

2

2
𝐾

𝑘=1

 ) − ||𝑢𝑡||
2

2
 

(3) 

This measure provides insight into how closely aligned the workers’ models are at any given 
time. High variance indicates that the models are widely spread out, essentially drifting apart, 
leading to a lack of cohesion in the aggregated model. Conversely, a moderate-low variance 
suggests that the workers’ models are closely aligned, working collectively towards the 



 
 
 
 
 

D4.1 Initial Report on Complex Event Forecasting, Learning and 
Analytics 
Version 1.0 
 
 

 

55 

 

shared objective. The variance plays a critical role in our approach, as it helps to gauge the 
state of the training process and make informed decisions about round termination. 

Round Invariant. We introduce the Round Invariant (RI), a condition that bounds model 
variance below a threshold, Θ: 

𝑉𝑎𝑟(𝑤𝑡) ≤ Θ (4) 

Our algorithm continuously monitors the model variance to maintain the RI. If the variance 
estimate exceeds the threshold Θ at any point t, the training round immediately terminates. 

This triggers synchronization, where all local model weights 𝑤𝑡
(𝑘)

 i are averaged and 

consolidated into the new global model 𝑤𝑡. 

Monitoring the RI. At this point, our focus shifts to devising a method to monitor the RI, as 
defined in (4). To align with the general literature, we will restate the problem of monitoring 
the RI using the standard distributed stream monitoring formulation. We begin by defining 
the local state for each worker k, denoted by 𝑆𝑘(𝑡)  ∈  ℝ𝑝, which encapsulates information 

from worker k at time t; it is updated arbitrarily. Next, we introduce the global state, 𝑆(𝑡)  ∈
 ℝ𝑝, which represents the collective state of the distributed system at time t. 

𝑆(𝑡)  =  
1

𝐾
∑ 𝑆𝑘(𝑡)

𝐾

𝑘=1

 
(5) 

Lastly, we define a special non-linear function 𝐻:  ℝ𝑝 ⟶ ℝ, with the following property: 

𝐻(𝑆(𝑡))  ≤  Θ  ⟹  𝑉𝑎𝑟(𝑤𝑡)  ≤ Θ  ∀ 𝑡 (6) 

Conceptually, if we define 𝑆𝑡(𝑡)  =   (||𝑢𝑡
(𝑘)

||
2

2

 ,  𝑢𝑡
(𝑘)

)   ∈  ℝ  ×  ℝ𝑑 and 𝐻(𝑣,  𝑥)  = 𝑣  − ||𝑥|| 2
2, 

then it immediately follows from (3) that property (6) is satisfied. Direct monitoring of the RI 
is hindered by the high dimensionality of 𝑆𝑘(𝑡), with d potentially ranging from millions to 
many billions, values commonly found in DNNs. To mitigate this communication burden, we 

must apply dimensionality reduction to the local drifts 𝑢𝑡
(𝑘)

 and identify an appropriate 

function H, accordingly. However, this reduction in information within local states causes RI 
monitoring to become approximate. Upcoming sections will detail three strategies–termed 
"naive", "linear", and "sketch"–each offering a different balance between communication 
efficiency and approximation accuracy. 

Algorithm. The proposed FDA algorithm is formalized in Algorithm 1. To streamline notation, 
t also denotes each training round, which unfolds into three main parts: 

(1) Broadcast: Model wt is distributed to all workers (Line 3) 

(2) Local Training: In essence, as long as we can guarantee the RI, each worker 

continues training concurrently (Lines 4-9). Specifically, workers perform in-parallel 

updates to their local models 𝑤𝑡
(𝑘)

 using mini-batch SGD, or some other optimization 

algorithm, by processing their local data (Lines 5-7). After each update, workers 

compute and broadcast their local states 𝑆𝑘(𝑡) (Line 8). Then the global state 𝑆(𝑡) is 

calculated, and using the function H, an estimate of the model variance is derived 

and compared with the threshold Θ (Line 9). Depending on this comparison, the local 

training stage either repeats or terminates. 
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(3) Model averaging: This stage is triggered since we can no longer guarantee the RI, 

i.e.,𝐻(𝑆(𝑡))  >  Θ. At this point, all local models are communicated and then averaged 

to form wt+1, that is, the next round’s global model (Lines 10-12) 

 

Algorithm 1 Functional Dynamic Averaging - FDA 

 Require: 𝑆𝑘(𝑡): The local state𝑆𝑘(𝑡)  ∈  ℝ × ℝ𝑝 with 𝑝  ≪  𝑑   

 Require: 𝐻(𝑥): A function s.t. 𝐻(𝑆(𝑡))  ≤  Θ  ⟹  𝑉𝑎𝑟(𝑤𝑡)  ≤  Θ 

 Require: K: The number of workers indexed by k 

 Require: Θ: The model variance threshold 

 Require: b: The local mini-batch size 

  

1.  Initialize 𝑤1 ∈  ℝ𝑑 

2.  for each round t = 1, 2,... do 

3.   communicate 𝑤𝑡to all workers 

4.   repeat 

5.    for each worker k = 1,..., K in parallel do 

6.     𝐵𝑘 ⟵  (sample a batch of size b from 𝐷𝑘  ) 

7.     𝑤𝑡
(𝑘)

⟵  𝑤𝑡
(𝑘)

− 𝜂∇𝑙𝑘 (𝑤𝑡
(𝑘)

;  𝐵𝑘)     ⊳  In-place 

8.    communicate 𝑆𝑘(𝑡) 

9.   until 𝐻(𝑆(𝑡))  >  Θ                         ⊳  As per (5) 

10.   for each worker k = 1,..., K in parallel do 

11.    communicate 𝑤𝑡
(𝑘)

 

12.   
𝑤𝑡+1 ⟵

1

𝐾
∑ 𝑤𝑡

(𝑘)

𝐾

𝑘=1

 

  

 

4.3.1 Linear Approximation 

In the linear approach, we reduce the 𝑢𝑡
(𝑘)

 vector to a scalar, that is, ⟨𝜉, 𝑢𝑡
(𝑘)

⟩   ∈  ℝ where 𝜉  ∈

 ℝ𝑑 is any unit vector. We define: 

𝑆𝑘(𝑡)  =   (||𝑢𝑡
(𝑘)

||
2

2

,   ⟨𝜉, 𝑢𝑡
(𝑘)

⟩)   ∈  ℝ × ℝ,  ||𝜉||
2

= 1 
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𝐻(𝑣,  𝑥)  =  𝑣  −  𝑥2 

Then, the condition 𝐻(𝑆(𝑡))  ≤  Θ implies 𝑉𝑎𝑟(𝑤𝑡)  ≤  Θ . Furthermore, a random choice of 

𝜉 is likely to perform poorly (terminate a round prematurely), as it is likely to be close to 
orthogonal to 𝑢𝑡. A good choice would be a vector correlated to 𝑢𝑡. A heuristic choice is to 

take 𝑢𝑡0
, i.e., the change vector right before the current round started. All workers can 

estimate this without communication cost as the difference of the models at the beginning of 
the current and previous rounds: 

𝜉  =  
𝑤𝑡0

− 𝑤𝑡−1

||𝑤𝑡0
− 𝑤𝑡−1

||
2

 

4.3.2 Sketch Approximation 

An optimal estimator for ||𝑢𝑡||
2

2
 can be obtained through the utilization of AMS sketches, as 

detailed in [67]. An AMS sketch of a vector 𝑣  ∈  ℝ𝑑 is an 𝑙 × 𝑚  real matrix Ξ: 

𝑠𝑘(𝑣)  =  Ξ  =  [𝜉1 𝜉2 … 𝜉𝑙]𝑇 ∈  ℝ𝑙×𝑚,  𝑙  ⋅  𝑚  ≪  𝑑 

The 𝑠𝑘(⋅) operator is linear and can be computed in 𝑂(𝑙  ⋅  𝑑) steps. Let 𝑙  =  𝑂 (log
1

𝛿
 ) and 

𝑚 =  𝑂 (
1

𝜖2). The function 

Μ2(Ξ)  =  𝑚𝑒𝑑𝑖𝑎𝑛 {||𝜉𝑖||
2

2
,  𝑖  =  1, … , 𝑙} 

Is an excellent estimator of ||𝑣||
2

2
: with probability a least (1 − 𝛿), Μ2(𝑠𝑘(𝑣)) is within 𝜖-

relative error of ||𝑣||
2

2
. Consequently, we define: 

𝑆𝑘(𝑡)  =   (||𝑢𝑡
(𝑘)

||
2

2

,  𝑠𝑘 (𝑢𝑡
(𝑘)

))   ∈  ℝ × ℝ𝑙×𝑚 

𝐻(𝑣,  Ξ)  =  𝑣  −  
1

1 + 𝜖
𝑀2(Ξ) 

Then, the condition 𝐻(𝑆(𝑡))  ≤  Θ implies 𝑉𝑎𝑟(𝑤𝑡)  ≤  Θ with probability at least (1 − 𝛿). 

 

4.4 Extending TensorFlow and KungFu to support FDA workflows 

4.4.1 TensorFlow Distributed 

TensorFlow provides an API to facilitate training distribution across multiple GPUs, 
machines, or TPUs, accommodating various use cases. MirroredStrategy supports 
synchronous distributed training on multiple GPUs within a single machine. It creates one 
replica of the model per GPU, with each variable mirrored across all replicas i.e., every 
replica keeps its own local copy of every variable.  

MultiWorkerMirroredStrategy extends the capabilities of MirroredStrategy to support 
synchronous distributed training across multiple workers, each potentially equipped with 
multiple GPUs. Like MirroredStrategy, it creates copies of all model variables on each device 
across all workers, ensuring synchronization across all replicas. 
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Typically, MultiWorkerMirroredStrategy executes a single training step on a batch of data for 
one replica and aggregates gradients across all replicas before applying them. With our 
necessary extensions to MultiWorkerMirroredStrategy, we apply gradients locally without the 
default aggregation and later average the model weights, instead, when the RI can no longer 
be guaranteed. Our implementation in TensorFlow supports both systems with the Slurm 
workload manager and custom clusters (specified through IP and Port information). 

4.4.2 KungFu 

KungFu [65] is a distributed machine learning library for TensorFlow. Its focus is to provide 
fast inter-GPU communication making use of the Nvidia Collective Communications Library 
(NCCL). NCCL is following on the Message Passing Interface (MPI) and achieves peer-to-
peer communication by designing a bidirectional ring topology based on the actual topology 
of the network’s GPUs. KungFu also offers custom tree topologies for the network of clients. 
This custom topology setting proved useful in simulating challenging network conditions 
prominent in Federated Learning scenarios. 

We extend KungFu to be an easily deployable implementation of Functional Dynamic 
Averaging (FDA) and an alternative to Distributed TensorFlow. The standard periodic 
synchronization scheme was transformed to a dynamic one. 

The experiments were also executed on a High-Performance Computing (HPC) setting using 
the Slurm Workload Manager. For a detailed analysis of the work done on KungFu please 
refer to the corresponding integrated master thesis [68].  

4.4.3 Simulations with TensorFlow 

Utilizing TensorFlow Distributed or KungFu entails incurring communications costs between 
workers, thereby slowing down our extensive suite of experiments by a lot. To mitigate this, 
we developed a package to simulate the DDL, via FDA, without actual inter-worker 
communication. A detailed exposition of this package can be found in [69].  

4.5 Experiments & Comparison to Prior Work 

Table 6: Setup 

Neural Network d Dataset Θ b K Optimizer Algorithms 

LeNet-5 62K MNIST {0.5, 1, 1.5, 
2, 3, 5, 7} 

32 {5, 10 ... , 60} Adam FDA, Synchronous, 
FedAdam 

VGG16* 2.6M MNIST {20, 25, 30, 
50, 75, 90, 

100} 

32 {5, 10 ... , 60} 

 

Adam 

 

FDA, Synchronous, 
FedAdam 

 

DenseNet121 6.9M CIFAR-
10 

{200, 250, 
275, 300, 
325, 350, 

400} 

32 {5, 10 ... , 60} 

 

SGD-NM FDA, Synchronous, 
FedAvgM 

 

DenseNet201 18M CIFAR-
10 

 

{350, 500, 
600, 700, 
800, 850, 

900} 

32 {5, 10 ... , 60} 

 

SGD-NM 

 

FDA, Synchronous, 
FedAvgM 

 

ConvNeXtLarge 

(fine-tuning) 

197M CIFAR-
100 

{25, 50, 100, 
150} 

32 {3, 5} 

 

AdamW FDA, Synchronous 
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Datasets & Models. The core experiments involve training Convolutional Neural Networks 
(CNNs) of varying sizes and complexities from scratch on two datasets: MNIST [70] and 
CIFAR-10 [71]. For the MNIST dataset, we employ LeNet-5 [72], composed of approximately 
62 thousand parameters, and a modified version of VGG16 [73], denoted as VGG16*, 
consisting of 2.6 million parameters. VGG16* was specifically adapted for the MNIST 
dataset, a less demanding learning problem compared to ImageNet [74], for which VGG16 
was designed. In VGG16*, we omitted the 512-channel convolutional blocks and 
downscaled the final two fully connected (FC) layers from 4096 to 512 units each. Both 
models use Glorot uniform initialization [75]. For CIFAR-10, we utilize DenseNet121 and 
DenseNet201 [76], as implemented in Keras [77], with the addition of dropout regularization 
layers at rate 0.2 and weight decay of 10-4, as prescribed in [76]. The DenseNet121 and 
DenseNet201 models have 6.9 million and 18 million parameters, respectively, and are both 
initialized with He normal [78]. Lastly, we explore a transfer learning scenario on the CIFAR-
100 dataset [71], a choice reflecting the DL community's growing preference of using pre-
trained models in such downstream tasks [ [79], [80]]. For example, a pre-trained visual 
transformer (ViT) on ImageNet, transferred to classify CIFAR-100, is currently on par with 
the state-of-the-art results for this task [81]. We adopt this exact transfer learning scenario, 
leveraging the more powerful ConvNeXtLarge model, pre-trained on ImageNet, with 198 
million parameters [77]. Following the feature extraction step [66], the testing accuracy on 
CIFAR-100 stands at 60%. Subsequently, we employ and evaluate our FDA algorithms in 
the arduous fine-tuning stage, where the entirety of the model is trained [82]. 

Algorithms. We consider five distributed deep learning algorithms: LinearFDA, SketchFDA, 
Synchronous, FedAdam [61], and FedAvgM [62]; the first three are standard in all 
experiments. Depending on the local optimizer, Adam [83] or SGD with Nesterov momentum 
(SGD-NM) [84], we also include their federated counterparts FedAdam or FedAvgM, 
respectively. Notably, Synchronous was derived from the Bulk Synchronous Parallel 
approach; can be understood as a special case of the FDA Algorithm 1 where Θ is set to 
zero. 

Evaluation Methodology. Comparing DDL algorithms is not straightforward. For example, 
comparing DDL algorithms based on the average cost of a training epoch can be misleading, 
as it does not consider the effects on the trained model's quality. To achieve a 
comprehensive performance assessment of FDA, we define a training run as the process of 
executing the DDL algorithm under evaluation, on (a) a specific DL model and training 
dataset, and (b) until a final epoch in which the trained model achieves a specific testing 
accuracy (termed as Accuracy Target in the Figures). Based on this definition, we focus on 
two performance metrics:  

1. Communication cost, which is the total data (in bytes) transmitted by all workers. 

Translating this cost to wall-clock time (i.e., the total time required for the computation 

and communication of the DDL) depends on the network infrastructure connecting 

the workers. Its impact is larger in FL scenarios, where workers often use slower Wi-

Fi connections. 

2. Computation cost, which is the number of mini-batch steps (termed as In-Parallel 

Learning Steps in the Figures) performed by each worker. Translating this cost to 
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wall-clock time is determined by the mini-batch size and the computational resources 

of the nodes. Its impact is larger for nodes with lower computational resources.  

Hyper-Parameters & Optimizers. Hyper-parameters unique to each training dataset and 
model are detailed in Table 6; Θ is pertinent to FDA algorithms and not applicable to others. 
Notably, a guideline for setting the parameter Θ is provided in Section 3.4.2. For experiments 
involving FedAvgM and FedAdam, we use E = 1 local epochs, following [61]. For 
experiments with LeNet-5 and VGG16*, local optimization employs Adam, using the default 
settings as per [35]. In these cases, FedAdam also adheres to the default settings for both 
local and server optimization [ [77], [61]]. For DenseNet121 and DenseNet201, local 
optimization is performed using SGD with Nesterov momentum (SGD-NM), setting the 
momentum parameter at 0.9 and learning rate at 0.1 [76]. For FedAvgM, local optimization 
is conducted with default settings [ [77], [62]], while server optimization employs SGD with 
momentum, setting the momentum parameter and learning rate to 0.9 and 0.316, 
respectively [61]. Lastly, for the transfer learning experiments, local optimization leverages 
AdamW [85], with the hyper-parameters used for fine-tuning ConvNeXtLarge in the original 
study [86].  

Data Distribution. In all experiments, the training dataset is divided into approximately equal 
parts among the workers. To assess the impact of data heterogeneity, we explore three 
scenarios: (1) independent and identically distributed (IID) setup, (2) percentage-wise non-
IID setup: a portion of the dataset is sorted and sequentially allocated to workers with the 
remainder distributed in an IID fashion, and (3) label-specific non-IID setup: assignment of 
all samples from a specific label to a few workers while distributing the rest in an IID fashion, 
introducing label-centric data concentration. All three scenarios of data heterogeneity are 
evaluated using the same hyper-parameters. A constant aspect across our various 
experiments, for a specific data heterogeneity setting, is the data partitioning, solely based 
on the number of workers involved. For example, in the IID setting, for all tests involving K = 
25 workers, data partitioning remains consistent. 

4.5.1 Results 

Due to the extensive set of unique experiments (over 1000), as detailed in Table 6, we 
leverage Kernel Density Estimation (KDE) plots [87] to visualize the bivariate distribution of 
computation and communication costs incurred by each strategy for attaining the Accuracy 
Target. These KDE plots provide a high-level overview of the cost trade-off for training 
accurate models. As an illustrative example, Figure 25 depicts the strategies' bivariate 
distribution for the LeNet-5 model trained on MNIST with different data heterogeneity setups. 
In these plots, the SketchFDA distribution is generated from experiments across all hyper-
parameter combinations (Θ and K in Table 1) that attained the Accuracy Target of 0.985. 

FDA balances Communication vs. Computation. DDL algorithms face a fundamental 
challenge: balancing the competing demands of computation and communication. Frequent 
communication accelerates convergence and potentially improves model performance, but 
incurs higher network overhead, an overhead that may be prohibitive when workers 
communicate through lower speed connections. Conversely, reducing communication saves 
bandwidth but risks hindering or even stalling convergence. Traditional DDL approaches, 
like Synchronous, require synchronizing model parameters after every learning step, leading 
to significant communication overhead but facilitating faster convergence (lower computation 
cost). This is evident in Figure 25, Figure 26, and Figure 27 (where Synchronous appears in 
the bottom right --- low computation, very high communication). Conversely, Federated 
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Optimization (FedOpt) methods [61] are designed to be very communication-efficient, 
drastically reducing communication between devices (workers) at the expense of increased 
local computation. Indeed, as shown in the aforementioned figures, FedAvgM and FedAdam 
reduce communication by orders of magnitude but at the price of a corresponding increase 
in computation. Our two proposed FDA strategies achieve the best of both worlds: the low 
computation cost of traditional methods and the communication efficiency of FedOpt 
approaches, as in Figure 25, Figure 26, and Figure 27. In fact, they significantly outperform 
FedAvgM and FedAdam in their element, that is, communication-efficiency. Across all 
experiments, the FDA methods' distributions lie in the desired bottom left quadrant --- low 
computation, very low communication. 

FDA counters diminishing returns. The phenomenon of diminishing returns states that as 
a DL model nears its learning limits for a given dataset and architecture, each additional 
increment in accuracy may necessitate a disproportionate increase in training time, tuning, 
and resources [ [66], [88]]. We first clearly notice this with VGG16* on MNIST in Figure 26 
for all three data heterogeneity settings. For a 0.001 increase in accuracy (effectively 10 
misclassified testing images) FedAdam needs an order of magnitude more computation and 
communication. Similarly, Synchronous requires comparable increases in computation and 
approximately half an order of magnitude more in communication. On the other hand, the 
FDA methods suffer a slight (if any) increase in computation and communication for this 
accuracy enhancement. For DenseNet121 and DenseNet201 on CIFAR-10 (Figures omitted 
due to space constraints), FedAvgM and Synchronous require half an order of magnitude 
more computation and communication to achieve the final marginal accuracy gains (0.78 to 
0.81 for DenseNet121, and 0.78 to 0.8 for DenseNet201). In contrast, the FDA methods 
have almost no increase in communication and comparable increase in computation. 

FDA is resilient in data heterogeneity. In DDL, data heterogeneity is a prevalent challenge, 
reflecting the complexity of real-world applications where the IID assumption often does not 
hold. The ability of DDL algorithms to maintain consistent performance in the face of non-IID 
data is a critical metric for their effectiveness and adaptability. Our empirical investigation 
reveals the FDA methods' noteworthy resilience in such heterogeneous environments. For 
LeNet-5 on MNIST, as illustrated in Figure 25, the computation and communication costs 
required to attain a test accuracy of 0.985 show negligible differences across the IID and the 
two Non-IID settings (Label "0", 60%).  

 

 

  

Figure 25: LeNet-5 on MNIST 

Similarly, for VGG16* on MNIST, Figure Figure 26 demonstrates that achieving a test 
accuracy of 0.995 incurs comparable computation and communication costs across the IID 
and the two Non-IID settings (Label "0", Label "8"); while overall costs are aligned, the 
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distributions of the computation costs exhibit greater variability, yet remain closely consistent 
with the IID scenario. 

   

  

 

 

Figure 26: VGG16* on MNIST 

 

FDA generalizes better. The factors determining how well a DL algorithm performs are its 
ability to: (1) make the training accuracy high, and (2) make the gap between training and 
test accuracy small. These two factors correspond to the two central challenges in DL: 
underfitting and overfitting [66]. For DenseNet121 on CIFAR-10, with a test accuracy target 
of 0.8, as illustrated in Figure 28, Synchronous and FedAvgM exhibit overfitting, with a 
noticeable discrepancy between training and test accuracy. In stark contrast, the FDA 
methods have an almost zero accuracy gap. Turning our focus to DenseNet201 on CIFAR-
10, with a test accuracy target of 0.78, Synchronous again tends towards overfitting, while 
FedAvgM shows a slight improvement but still does not match the FDA methods, which 
continue to exhibit exceptional generalization capabilities, evidenced by a minimal training-
test accuracy gap (Figure 26). Notably, given the necessity to fix hyper-parameters Θ and K 
for the training accuracy plots, we selected two representative examples. The patterns of 
performance we highlighted are consistent across most of the tests conducted. 

 

 

 

 

Figure 27: DenseNet121 and DenseNet201 on CIFAR-10 
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Figure 28: Training accuracy progression with a (test) accuracy target of 0.8 (left), 
and 0.78 (right). A smaller final gap between training and target accuracy indicates 

less overfitting, i.e., better generalization capabilities of the trained model 

Dependence on K. In distributed computing, scaling up typically results in proportional 
speed improvements. In DDL, however, scalability is less predictable due to the nuanced 
interplay of computation and communication costs with convergence, complicating the 
expected linear speedup. This unpredictability is starkly illustrated with LeNet-5 and VGG16* 
on the MNIST dataset across all data heterogeneity settings and all strategies. Specifically, 
Figure 29 demonstrates (at its left part) that increasing the number of workers does not 
decrease computation -- except for FedAdam which begins with significantly high 
computation -- but rather exacerbates communication (shown at the left part of the figure). 
These findings are troubling, as they reveal scaling up only hampers training speed and 
wastes resources. However, for more complex learning tasks like training DenseNet-121 
and DenseNet-201 on CIFAR-10 (Figure 30 and Figure 31), the expected behaviour 
emerges. Scaling up (K increase) leads to a decrease in computation cost for all strategies. 
Communication cost, however, increases with K for all methods except Synchronous, which 
maintains constant communication irrespective of worker count, but at the expense of orders 
of magnitude higher communication overhead. Notably, while our findings might, in some 
cases, suggest potential speed benefits of not scaling up (smaller K), DDL is increasingly 
conducted within federated settings, where there is no other choice but to utilize the high 
number of workers. 

  

Figure 29: VGG16* on MNIST – Accuracy Target: 0.994 

FDA: Dependence on Θ. The variance threshold Θ can be seen as a lever in balancing 
communication and computation; essentially, it calibrates the trade-off between these two 
costs. A higher Θ allows for greater model divergence before synchronization, reducing 
communication at the cost of potentially increased computation to achieve convergence. 
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This impact of Θ is consistently observed across all two FDA strategies, learning tasks, and 
data heterogeneity settings (Figure 29, Figure 30 and Figure 31). Interestingly, for more 
complex models like DenseNet121 and DenseNet201 on CIFAR-10, increasing the variance 
threshold (Θ) does not lead to a significant rise in computation cost, as illustrated in Figure 
30 and Figure 31. It suggests that the FDA methods, by strategically timing synchronizations 
(monitoring the variance), substantially reduce the number of necessary synchronizations 
without a proportional increase in computation for the same model performance; this is 
particularly promising for complex DDL tasks. 

  

Figure 30: DenseNet121 on CIFAR-10 – Accuracy Target: 0.8 

  

Figure 31: DenseNet201 on CIFAR-10 – Accuracy Target: 0.78 

FDA: Choice of Θ. The experimental results suggest that selecting any Θ within a specific 
order of magnitude (e.g., between 102 and 103 for DenseNet201) ensures convergence, as 
demonstrated in (Figure 29, Figure 30 and Figure 31). Therefore, identifying this range 
becomes crucial. To this end, we conducted extensive exploratory testing to estimate the Θ 
ranges for each learning task which are predominantly influenced by the number of 
parameters d of the DNN. Within this context, Θ values outside the desirable range exhibit 
notable effects: below this range, the training process mimics Synchronous or Local-SGD 
approaches with small τ, while exceeding it leads to non-convergence. 
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Figure 32:  Empirical Estimation of the Variance Threshold 

Subsequently, having identified the optimal ranges for Θ, we selected diverse values within 
them for our experimental evaluation (Table 6), thereby investigating different computation 
and communication trade-offs. For instance, in the ARIS-HPC environment with an 
InfiniBand connection (up to 56Gb/s), experiments show that training wall-time (the total time 
required for the computation and the communication of the DDL) is predominantly influenced 
by computation cost, rendering communication concerns negligible. In such contexts, lower 
Θ values are favoured due to their computational efficiency. On the contrary, in FL settings, 
where communication typically poses the greater challenge, opting for higher Θ values 
proves advantageous; reduction in communication achieved with higher Θ values will 
translate in a large reduction in total wall-time. To assist researchers in selecting an optimal 
variance threshold, Figure 32 presents empirical estimations for Θ across three distinct 
learning settings: FL (assuming a common channel of 0.5 Gbps), Balanced (communication-
computation equilibrium), and HPC. 

FDA: Linear vs. Sketch. In our main body of experiments, across most learning tasks and 
data heterogeneity settings, the two proposed FDA methods exhibit comparable 
performance, as illustrated in Figure 25, Figure 26, and Figure 27. This suggests that the 
precision of the variance approximation is not critical; occasional "unnecessary" 
synchronizations do not significantly impact overall performance. However, in all 
experiments within the more intricate transfer learning scenario, LinearFDA requires 
approximately 1.5 times more communication than SketchFDA to fine-tune the deep 
ConvNeXtLarge model to equivalent performance levels (Figure 33). In light of these 
findings, we conclude the following: for straightforward and less demanding tasks, 
LinearFDA is the recommended option due to its simplicity and lower complexity per local 
state computation. On the other hand, for intricate learning tasks and deeper models, 
SketchFDA becomes the preferred choice, particularly if communication-efficiency is 
paramount. 
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Figure 33: ConvNeXtLarge on CIFAR-100 (transfer learning from ImageNet) — 
Deployment of FDA during the fine-tuning stage with Accuracy Target of 0.76 

FDA on various topologies. We used KungFu [65] to run similar experiments to the other 
two approaches (TensorFlow Simulations and Distributed TensorFlow), with similar results 
that showcase the effectiveness of the FDA methods in communication reduction. In addition 
to the other methods, using KungFu we had the opportunity to perform our experiments on 
different network topologies (Figure 34). Furthermore, three different topologies were used 
for these experiments, one being the default ring topology of KungFu and NCCL, a binary 
tree and a star topology. We chose to test these topologies for the maximum number of 
clients available as communication cost would be more prominent. Bearing in mind that 
communication is more expensive for the new network topologies, we assumed that the 
training performance of the FDA methods would be even more beneficial. This is clear in the 
figures above, as the FDA methods perform much better in real training time for 50 epochs. 
This means that they would be much needed for scenarios where the communication cost 
is high. For the experimental hyper-parameters please refer to the diploma thesis [68]. 

 

Figure 34: Communication time distribution with variable topology 

4.6 FDA in NeRF computation for the Weather Emergencies Use 
Case 

4.6.1 NeRF and distributed pipeline planning 

Neural Radiance Field (NeRF) is a method that uses deep learning and can create 
photorealistic 3D representations of scenes. A basic NeRF model requires the input of 2D 
images of the scene, along with proper metadata describing the camera positioning. Our 
work on FDA and distributed deep learning could be used in the future to distribute the 
training process of NeRFs to multiple computing nodes, while also avoiding the transfer of 
images to a central location. With this in mind, we delved into the largely open problem of 
distributed NeRF training. 
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The metadata of the images are also called poses and are usually a 6 degrees of freedom 
variable depicting where the camera was located during the image capture (translation) and 
its viewing direction (rotation). The poses of the camera are not known a-priori, and they can 
be calculated using a Structure from Motion (SfM) algorithm like COLMAP [89]. These 
algorithms can extract these images metadata by finding and linking key-points that can be 
found in different images of the dataset. This SfM phase, prior to NeRF training, should also 
be distributed among the nodes of the network. 

Now we can describe an ideal pipeline so that we can distribute the NeRF training process 
during the use case of a weather emergency. Let’s say a weather emergency happens in a 
large scene and we want to deploy a group of drones to scan the area capturing 2D images. 
These images should ideally be transmitted to multiple GPU-equipped mobile computing 
centres located as close to the drones as possible. Each such server would end up having 
a subset of the total of images and running SfM experiments using them. The SfM camera 
poses located on different servers get aligned using their camera’s GPS sensors data. Then 
each server trains a local NeRF model based on their own data. After some time, or when 
the FDA method indicates, all local NeRF models are transmitted in a central location where 
they get aggregated accordingly to a global NeRF. This global NeRF model can then be 
used to render novel views of the area in 3D by civil protection personnel. 

4.6.2 Experimentation and limitation 

To organize and perform the experiments, we have collaborated with the Deutsches 
Rettungsrobotik-Zentrum (DRZ) through extensive meetings. DRZ provided a dataset of 249 
images taken by a DJI M30T drone, depicting their premises in Dortmund from various 
angles. The scene includes cars and a rubble area and resembles actual scenarios of the 
weather emergency use case. We aim for the resulting 3D representation to include these 
details in high resolution Figure 35. 

We have experimented with different kinds of Structure from Motion (SfM) algorithms such 
as WebODM, COLMAP [89], Hierarchical Localization [90] and Pixel Perfect SfM [91]. We 
have concluded that COLMAP is more than enough to estimate camera poses adequately. 
As for NeRF models, we have mostly focused on the Nerfacto model, a model created for 
the NeRF framework Nerfstudio [92]. We have extended Nerfstudio to be able to conduct 
distributed learning simulations, using groups of images that are distributed either uniformly 
or in geographical blocks. The results of distributed experiments are promising, especially 
for multiple clients, in terms of reducing the training time required.  

The main obstacle, that is currently work in progress, is improving the resulting global model. 
The aggregated model rendered images exhibit some “waving” effects that reduce the quality 
and sharpness of them. This is most likely caused by noise between the pose estimation of 
different SfM models. 
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Figure 35: Experimental setup 
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5 Optimized Distributed Analytics as a Service 

 

5.1  Motivation and Optimization Aspects in CREXDATA  

From its very foundation, the architectural framework of CREXDATA, as described in 
Deliverable D3.1, operates across the cloud to edge continuum including the lot of available 
devices. From resource constrained sensors, of medium processing and memory capacity, 
to fog devices and powerful servers at the cloud side. The naïve approach of executing the 
prescribed extreme scale analytics only at the cloud side is not scalable as it entails a number 
of important disadvantages. First, naively relaying the continuously produced streaming data 
at the cloud side incurs extreme network load depleting the available bandwidth. This 
diminishes the potential for scalability in the federated setting [93] and, in turn, causes 
network latencies. Such latencies hinder the execution of analytics pipelines in a real-time, 
online fashion. Second, at the edge side of the network, data transmission is by far the main 
culprit in energy drain for battery powered edge devices [94]. Therefore, transmitting the raw 
data reduces the network lifetime and increases administrative and equipment costs. Third, 
all the devices across the cloud to edge continuum have some, variable and potentially 
limited; though existing, processing power. By naively using every node in the network only 
as a data producer or relay node, one does not exploit the full, aggregative processing power 
of the network.  

Hence, the preferable way to go is to distribute the processing load of an extreme scale 
analytics workflow across the devices of the network based on the computational, memory 
demands of each operator (relational, Machine Learning, Neural Learning or User Defined 
Function operator) and the computational capacity of each device. However, this is easier 
said than done because the involved task is a combinatorial optimization resource allocation 
problem of interconnected tasks (operators), each of which can be executed in multiple 
devices; and based on the devices it chooses for itself, it affects the performance of all 
upstream (to which it provides input) operators of the workflow.  

On the other hand, it would be error prone to allow the user or the application to manually 
decide on which device each operator will be executed since, in extreme scale scenarios, 
the potential performance of a number of concurrently executed workflows and/or the 
number of the devices of the network is not tractable by a human operator. Therefore, what 
we need for optimized streaming analytics as a service in the scope of CREXDATA is an 
algorithmic suite which automates the optimization process under any workflow(s) and 
network set up. Each algorithm of this suite receives as input a logical workflow. A logical 
workflow incorporates the application logic, but is deprived from the actual, physical 
execution details. The output of each algorithm is a physical execution plan or physical 
workflow where, for each of the operators of the logical workflow(s), it automatically 
prescribes the device(s) it will be executed on, along with possible execution options 
(discussed shortly).  

Consider, for instance, Figure 36. On the left-hand side there is a logical workflow, while on 
the right-hand side, an example of physical, small-scale network is depicted. The 
optimization suite of CREXDATA should decide on the mapping of operators to the physical 
devices for execution. However, it can easily be observed that there is a large number of 
possible mappings per operator as well as combinations of operators.  
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Figure 36: Logical Plan and Physical Network. The CREXDATA Optimized Analytics 
as a Service should device the placement of Logical Plan Operators to Physical 

Devices 

More precisely, in the general case, a wide variety of options regarding the physical 
execution of an operator exist: 

i. An operator may be assigned for execution one out of the entire set or to one out of 
a subset of the available devices. Depending on the capacity of the device and the 
computational, memory demands of the operator. 

ii. An operator may be replicated to multiple devices, or be assigned to only one device. 
It may also get executed on a device under a certain degree of parallelism. 

iii. An operator (e.g., Neural Learning operator) may be executed in a distributed fashion 
at the cloud side or across the network in a federated way. 

iv. An operator may be assigned to a device choosing to prefetch or cache its data and 
transmit them only upon demand. 

v. An operator may send its raw data or a subset (e.g., sample) of them.  

To better understand the complexity of the problem at hand, one should consider that if:  

• O operators in the CREXDATA workflow(s)  

• P possible options in categories (ii)-(v) per operator  

• S network devices/sites (category (i) above)  

exist, an exhaustive search algorithm has a search space of (P*S)O
 possible plans.   

What is more, is that the above are not one-shot decisions, but may need to get revised as 
time passes. This is due to the fact that new sites may enter or depart from the network or 
because the statistical properties of the ingested streams and, thus, of the workload may 
change. This says that in a highly volatile, extreme scale, streaming setup it may not be 
worthwhile to invest a large amount of time in prescribing a physical workflow by the time a 
logical workflow is submitted, but instead, start with a good enough physical plan, monitor 
its performance and adjust the execution as time passes.   

For instance, Figure 37a shows the evolution of the execution of a logical workflow initially 

deployed entirely at the cloud side (denoted by the Apache Flink icon  on each operator) 
at time t0. Then, at time t1, the optimizer discovers a new physical plan, stops the execution 

of the previous one and chooses to change the rightmost, bottom operator from to the 
 site (Figure 37b). This operator, as is the case with all operators at the bottom of the 

logical workflow (Figure 36), is a filter operator. Therefore, after an instant placement at time 
t0, the optimizer sees the opportunity to distribute the load to one more site ( ) and also 
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reduce the network load by filtering (choosing a subset of the produced streams) at the fog 
side rather than currying the raw data to the cloud.  

 
(a)  

(b) 

 
(c)  

(d) 

Figure 37: Different physical plans prescribed as time passes from t0 to tk+2 

Continuing our running example at time tk+1, Figure 37c shows that the optimizer has chosen 
to act similarly for all filter operators at the bottom of the workflow, assigning their execution 
to more sites at both the fog and the edge side of the network. Furthermore, each of these 
operators has been replicated to multiple sites in order to further reduce the processing load 
and restrict bandwidth consumption. For instance, the rightmost filter operator at the bottom 

of the workflow is now executed at a fog device , an edge – sensor device  and 

another, mobile edge site . Finally, Figure 37d shows the final execution plan devised by 
the optimizer where also the topmost Machine Learning operators of the workflow are 
chosen to get executed in a federated way.  

Given the above, the optimization approach in CREXDATA accounts for arbitrarily large-
scale settings including arbitrarily many workflows, arbitrarily many sites, arbitrarily many 
physical execution options, the volatility of the network setup and the data stream 
characteristics. The approach CREXDATA chooses to achieve these goals can be 
summarized in the following key optimization concepts: 

• It starts with an instantly devised, empirically good enough plan, 
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• as the initial plan is executed, the chosen algorithm from CREXDATA algorithmic 
suite continues executing at the background to improve the running physical plan, 

• all algorithms are inherently parallel in nature during the exploration of all or a vast 
amount of possible physical plans from the arbitrarily large sized search space, to 
achieve exploring as many candidate physical plans as possible in an sorter period 
of time, 

• the suite includes exhaustive search, sampling-based and greedy algorithms 
trading the algorithm execution time for the goodness of the devised physical plan. 

The parallel nature of CREXDATA algorithms themselves (not of the parallel execution of 
the workflows) is a unique feature in the relevant literature  [95] [96] [97] [98] [99]. 

5.2  Optimization Setup 

CREXDATA optimizes logical workflows devising physical plans based on the following 
performance criteria: 

• Throughput [T]: number of input tuples being processed per time unit, 

• Latency [L]: including both network and processing latency, which measures the time it 
takes for a data item to get ingested into the executed physical workflow and get out of 
it as a processed tuple, 

• Communication Cost [C]: which quantifies the amount of communicated data throughout 
the network as an indicator of the bandwidth consumption incurred by a chosen physical 
plan, 

• Energy Consumption [E]: this is an optional criterion included to measure the total 
amount of energy getting consumed by the running physical workflow(s). It is often useful 
to measure the lifetime of the network (recall that the network also consists of battery 
powered devices and loses its functionality as more devices become non-operational 
due to energy drains). 

 

Figure 38: Illustration of Pareto Optimal Physical Plans 

CREXDATA optimized analytics-as-a-service algorithms seek to find Pareto optimal 
solutions (physical plans). That is, physical plans that are not dominated, in each and every 
of the aforementioned performance dimensions, from others. Figure 38 provides an 
illustration of how a number of possible physical execution plans can be represented in a 
three-dimensional space encompassing the first three of the aforementioned metrics. Blue 
dots correspond to physical plans/workflows that are dominated in every dimension by 
others. Pareto optimal physical plans are those whose performance corresponds to the red 
dots. In order to choose among the Pareto optimal physical plans (red dots), CREXDATA 
optimization uses a convex combination of the various performance [T,L,C] measures.   

Each physical workflow is represented (as also shown in Figure 37) as a graph, where each 
operator is mapped to its physical execution specifications. We call the initial workflow 
devised at time t0 in the example of Section 5.1 as the root plan. But, in general, we term the 
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currently executed physical plan (at any time tk) as the root plan. While the root plan is 
executed, the CREXDATA optimization algorithm keeps operating at the background and 
explores more, potentially better physical execution plan opportunities. To do that, each of 
the algorithms in our algorithmic suite operates on a Graph of Graphs (GoG).  

 

Figure 39: Two Nodes of the Graph of Graphs representation of the CREXDATA 
streaming analysis as a service 

Each node of the GoG includes a physical workflow (i.e., a nested graph). Note that in the 
general case a node of the GoG may include a set of nested graphs if we want to 
simultaneously optimize many logical workflows. Nonetheless, for ease of exposition we 
henceforth assume a single logical workflow is being optimized and thus, a nested graph is 
a possible physical workflow of a single logical one. 

An edge between nodes of the GoG is an action that performs a single change to the 
execution options or site(s) of just one operator of a physical workflow. As an example, 
Figure 39 shows a root plan with all operators placed at the cloud side. This plan is the red 
node of the GoG. To visit/explore the performance of another, green node of the GoG, an 

action that migrates the rightmost, bottom operator of the root physical workflow, from  
to , is applied. This action yields a new physical plan with its own overall cost and a 
migration cost. The migration cost involves the cost that should be accounted for increased 
latency or zero throughput during if we decide to switch between the root and the candidate 
new plan. If Cost Root Plan – Cost Candidate Plan + Migration Cost is a very negative (or 
very positive if we reverse the signs) value, this means that, for instance the green plan in 
Figure 39, improves per capita the root plan. Therefore, the green physical plan should be 
deployed instead.  

But, of course, the green plan is just one node of the GoG, visited based on a single action. 
There are other actions in the root plan that can be applied in order to lead to other green 
nodes, i.e., candidate physical plans. Moreover, upon applying two actions instead of one, 
we have candidate physical plans that are two hop neighbours of the root plan. Two-hope 
neighbours are physical plan yielded from the root one after applying 2 actions (changes), 
three-hop neighbours are yielded from applying 3 actions to the root plan and so on. 
Therefore, the search space over which the CREXDATA algorithmic suit operates looks as 
depicted in Figure 40. 
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Figure 40: Graph of graphs (GoG) as the search space encompassing all possible 
physical plans - workflows for a given set of workflows and a network setting. Each 
node in the figure includes a nested graph which is a physical plan/workflow. Edges 
correspond to simple, single actions (changes) leading from one physical workflow 

to another. 

5.3 Algorithmic Suite 

5.3.1 Exhaustive Search (ESC) Algorithm 

CREXDATA’s exhaustive search approach creates the physical plan space by enumerating 
all possible nodes of the GoG using counting and number base switch. The algorithm is 
based on the enumeration of all possible plans using workflow signatures. Workflow 
signatures are formed as follows. For O operators, equivalently termed vertices in the scope 
of our algorithms, P execution options per operator/vertex and S sites, the possible plans 
are: (P * S) ^ O. We consider each vertex as a vector that can take P*S values and construct 
an index into the O vectors as a O-digit, base-(P*S) number. Each digit of this number is an 
index into one of series of vertex vectors representing a nested physical plan in the GoG. 

For example, for a flow with 4 vertices and 4 possible values (e.g., 2 execution options (as 
an example, replication 2 or no replication) and 2 “change site” actions), we count from 0 to 
44=256, convert each number to 4 base-4 digits, and use these digits as indices into the 
vertex vectors to get a physical plan which corresponds to a nested node in the GoG. In this 
example, the possible actions are [P1|S1, P1|S2, P2|S1, P2|S2]. Hence, the number 164 
maps to 2210 after base change, which represents the plan: O1(P2S1) -> O2(P2S1) -> 
O3(P1S2) -> O4(P1S1). The pseudocode of the parallel Exhaustive Search with Counting 
(ESC) is detailed in Algorithm 2. 

ESC is straightforwardly parallelizable as each worker can compute a single plan and its 
cost independently from the other workers. The algorithm explores the entire search space 
of physical plans. 

In Lines 4-5 of Algorithm 2, the algorithm starts with the root plan and its cost. Line 6 starts 
a pool of threads for parallelization purposes and Line 7 computes the cardinality of the 
search space (number of possible physical plans). The for loop in Lines 8-11 takes in the 

sequential number of a plan and creates tasks for the workers. Each task that is created with 
the purpose of executing an instance of the planWorker method receiving as parameters 

the root workflow, the list of possible actions that may be applied to it and the plan counter 
i. As noted in Line 10, each such task is executed as soon as a worker becomes available.  

The job of the planWorker method in Line 17 is to translate the plan number to an actual 

plan signature using the change base and the translation process into vertex vectors as 
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previously described in this section. Then, having the root workflow and the i-th candidate 
physical workflow, the function initially distinguishes which actions need to be applied in 
order to make the transition from the root to the i-th plan (Lines 21-23). Having done that, 
Lines 25-28 compute the plan cost and update, if needed, the global best plan and the 
accompanying, minimum so far, cost. 
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Algorithm: ESC 

Input: <Graph> workflow, <List> actions, <int> k 

Output: Optimal plan 

minPlan ← workflow; 

minCost ← workflow.cost; 

 

start a pool WP with k workers; 

#plans ← (#platforms * #sites) ^ #vertices; 

for (int i; i < #plans; i++) { 

       w ← planWorker(workflow, actions, i); 

       WP.execute(w);    // runs once there is an available worker 

} 

 

terminate WP; 

return minPlan; 

 

Algorithm: planWorker 

Input: <Graph> workflow, <List> actions, <int> i 

Output: updates global variables minPlan, minCost 

action[ ] n ← map i into actions;  // n contains vertex placements ordered by vertex position 

g ← workflow                 // work on a copy of flow 

int c ← 0; 

for <Vertex> v in g { 

action a ← n[c++];      // get action at position c, which corresponds to the c-st vertex in g 

apply a on v;               // e.g., change v placement (site/execution option) 

update v dependencies;      // modify v instances in all v’.adjVertices for {v’∊g’,s.t. V’≠v} 

// compute new workflow cost (each action results into a new plan) 

c ← g.computeCost(); 

if (c < minCost) { 

    minCost = c; 

    minPlan = g; 

} 

} 

Algorithm 2: CREXDATA Exhaustive Search Algorithm Pseudocode 
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5.3.2 Greedy Search (GSP) Algorithm 

The Greedy Search Algorithm (GSP) of CREXDATA’s algorithmic suite operates in steps 
(hops starting from the root plan on the GoG) aiming at finding progressive global optima at 
each step. In other words, GSP creates the GoG by following a greedy plan enumeration 
with progressive global optima. At each step, the algorithm progresses with the best (i.e., 
cheapest) single action across the entire workflow and repeats until all assignments are 
completed. The process is as follows: 

1. Start with a workflow (initially the root one) 
2. Find the action (one hop neighbour) that produces the lowest physical workflow cost 
3. Update the workflow graph with the action 
4. Repeat starting from the best plan found so far 

The process is detailed in Algorithm . For better illustration we will describe the rationale of 
the algorithm using its visual representation in Figure 41. 
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Algorithm: GSP 

Input: <Graph> workflow, <List> actions 

Output: A plan with the minimum cost found 

g ← workflow;                     // work on a copy of flow 

g’ ← null;                        // a graph to keep an intermediate state 

minV, minA ← null;                //to keep vertices with minimum cost action and the action 

<List> vlst ← all <Vertex> v of g; 

while (vlst is not empty) { 

minCost ← ∞; 

g’ ← g; 

// find the cheapest action 

for vertex v in vlst {           // for each vertex 

for action a in actions {        //try all actions 

apply a on v;                    // e.g., change v placement (site/execution option) 

update v dependencies;  // modify v instances in all v’.adjVertices for {v’∊g’,s.t. V’≠v} 

c ← g.computeCost();             // compute new workflow cost  

if (c < minCost) {               // keeps the cheapest action and the vertex with that action 

     minCost ← c; 

     minV ← v;                    

     minA ← a;                     

} 

} 

} 

// update intermediate state  

g ← g’;  

apply minA on minV;   

update minV dependencies; 

g.computeCost();      

// remove the visited vertex and repeat 

vlst.remove(minV); 
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30 

31 

32 

33 

minV, minA ← null; 

} 

return g; 

Algorithm 3: CREXDATA Greedy Search Algorithm Pseudocode 

 

(a) 
 

(b) 

 

(c) 

Figure 41: Illustration of the Greedy Search Algorithm Operation 

Figure 41 shows 3 iterations of the GSP algorithm. In Figure 41a, the algorithm starts from 
the red, root plan and computes the costs of the one hop neighbours, yielded after applying 
possible actions. Out of the examined plans, the light blue-coloured one is the current global 
optimum. Therefore, the algorithm uses this plan and repeats the process by examining the 
actions and computing the costs of its one hop neighbours. In Figure 41b, out of the two 
possible actions, the newly light blue-coloured one is the new global optimum. In the third 
iteration of the algorithm, the one hop neighbours of the latter plan are examined. In Figure 
41c we observe that only a single one hop neighbour exists and gives a new global optimum 
and so on.  

The greedy solution is suboptimal, as the decision at each step does not consider the long-
term value of its action, but it is extremely fast requiring minimal execution time. This is 
important in highly volatile settings where network devices enter or leave frequently, as well 
as when stream statistical properties often change. If in such settings the optimization 
algorithm needs a considerable amount of time to return a preferable physical plan, its 
suggestion may be outdated by the time it is returned. GSP’s speed gracefully handles such 
situations. GSP can be parallelized either at the vertex or the action level, but our 
experimental results show that this is not necessary as its execution time is minimal even for 
large scale networks.  
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5.3.3 Random Sampling Search (RSS) Algorithm 

The RSS algorithm computes a random sample of the possible physical plans and returns 
the best solution amongst them. The algorithm builds on top of the ESC technique. Recall 
that ESC creates the plan space by enumerating all possible states using counting and 
number base switch. Instead of enumerating all possible plans (and thus finding an optimal 
solution), RSS instantiates a sample of them. An exemplary illustration is provided in Figure 
42. 

 

Figure 42: Illustration of the Random Sampling Search Algorithm Operation 

Algorithm 4 outlines RSS operation. RSS uses the same planWorker method as ESC does 

(Line 15), but it instantiates it only for the sampled physical plans (Lines 11-13) The solution 
returned is suboptimal, as the random selection of plans does not guarantee finding the 
optimal plan. 
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Algorithm: RSS 

Input: <Graph> flow, <List> actions, int sampleSize 

Output: A plan with the minimum cost found 

minPlan ← flow; 

minCost ← flow.cost; 

 

#plans ← (#platforms * #sites) ^ #vertices; 

 

if (sampleSize >= #plans) sampleSize = #plans;    // if the plan space is small do ESC 

 

<List> sample ← get sampleSize unique numbers in [0,#plans); 

 

for int i in sample { 

// work similarly to ESC 

planWorker(flow, actions, i); 

} 

 

Algorithm 4: CREXDATA Random Search Sampling Algorithm Pseudocode 

The advantage of RSS over GSP is that it cannot be trapped to local optima (global optima 
per step as computed by GSP). Furthermore, the execution time of the algorithm is in direct 
relation to the chosen sample size. Therefore, depending on the volatility of the optimization 
setup may be a more preferable choice compared to GSP. Our experimental evaluation in 



 
 
 
 
 

D4.1 Initial Report on Complex Event Forecasting, Learning and 
Analytics 
Version 1.0 
 
 

 

79 

 

Section 5.5 provides a practical comparison of ESC, GSP, RSS in practical workflows and 
small, medium, large-scale networks of devices.  

Since CREXDATA may, in some cases, also need to process static data stored at a 
database (for instance terrain and other information in the Weather Emergency Use case or 
coastal area information in the Maritime Use Case) using used defined functions (UDFs) 
expressed as a RM Studio operator, we handled such cases separately. More precisely, we 
designed QFusor, an optimizer plugin for UDF queries over relational databases. QFusor 
minimizes the performance overheads introduced upon using UDFs in SQL execution 
environments by employing techniques such as vectorization, parallelization, tracing JIT 
compilation, and operator fusion for various, commonly used and supported in RapidMiner 
Studio, types of UDF also engaging relational operators. QFusor is engine-agnostic and can 
work with several popular SQL databases some of which are supported by RapidMiner 
Studio in the overall CREXDATA architecture. 

5.4  Statistics Collection and the Need for Simulators 

For our algorithms to be useful in devising a physical plan of good practical performance, 
they require accurate statistics. These statistics are to be used in the computeCost function 

they all incorporate. In the past, various approaches have adopted System-R like techniques 
or machine learning models [100] [101] to incorporate statistics and use them to measure the 
overall performance of physical workflows. Nevertheless, the setups over which CREXDATA 
operates are different. The volatility of the network as well as the arbitrary size of workflows, 
networks, execution options and the variety of possible operators, together with the 
combinatorial optimization space, do not leave room for making the assumption that there 
exist neither accurate analytic formulas nor tractably trainable machine learning models that 
can capture the behaviour of combinations of operator physical implementations. Therefore, 
in CREXDATA we resort to derive statistics via truthful simulators possibly complemented 
with runtime statistics of the physical plans that are actually deployed. 

Nonetheless, this is easier said than done. We surveyed existing simulators, based on 
desired features including (a) number of citations and number of Github stars, (b) the 
programmability of the simulator (the ability to actually code operators and workflows), (c) 
the level of the cloud to edge continuum that can be covered by the simulator and (d) the 
coverage it can provide, directly or via derived measures, to the performance criteria in 
Section 5.2. The result of our survey is summarized in Table 7.  

Table 7: Candidate simulators and their adoption/popularity, metrics collection, 
cloud to edge continuum coverage features 

Simulator Github / 
Paper 
Citations 

Program
- mable 

IoT Layers 
Covered 

Metrics 

iFogSim [102] 175 / 1610 X Edge, Fog Cloud Execution time per 
tuple, Network usage, 
Energy consumption, 
Cost of infrastructure 

EdgeCloudSim 
[103] 

393 / 539 X Fog, Cloud Latency (per task) 
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Simulator Github / 
Paper 
Citations 

Program
- mable 

IoT Layers 
Covered 

Metrics 

PureEdgeSim 
[104] 

149 / 40 X Fog, Cloud Latency (per task) 

IoTNetSim [105] 0 / 28 X Edge, Fog Cloud - 

IoTSim-Edge 
[106] 

13 / 120 X Edge, Fog Energy consumption, 
latency(per event) 

IoTSim-Stream 
[107] 

3 / 17 X Cloud 
(Multicloud) 

CPU, RAM usage 

IoTSim [108] 0 / 255 X Edge, Cloud VM cost, execution time 

Raspberry Pi 

emulation13 

- Y Edge - 

Raspberry Pi 

cluster 

- Y Fog Custom metrics via 
Prometheus 

 

Based on Table 7, we resort to iFogSim (version 2) due to its popularity, layer coverage and 
richness of performance metrics. Nevertheless, iFogSim is not directly usable for simulating 
any valid physical plan in the scope of CREXDATA. Its limitations can be summarized as 
follows: (i) communication links are not bidirectional, therefore if one operator is assigned to 
a device in the fog, it cannot provide its output if the upstream operator is in the cloud, (ii) it 
cannot automatically receive a physical workflow from the rest of the CREXDATA 
architecture and deploy/ simulate it over a chosen network (iii) it does not provide all the 
target performance measures i.e., end to end latency and throughput as well as state size 
for migration cost calculation purposes are missing.  

To tackle the above limitations, we significantly redesign iFogSim. As illustrated in Figure 
43, iFogSim is now only a small sub-system of the CREXDATA Simulator Executor and 
Statistics Collector. Our contributions are the two sub-systems surrounding iFogSim, namely 
the workflow-placement-generator and ifogsim-wrapper. The workflow placement generator 
is able to generate topologies and workflows according to the specifications of the 
CREXDATA architecture. And then generate simulations for these workflows using the 
placement generator interface. Here, we use the strategy software pattern to have different 
algorithms for the placement generation. We plan to provide CREXDATA Simulator Executor 
and Statistics Collector open-source as soon as this effort is completed.  

 

13 M. Stawiski, “Emulating a raspberry pi in qemu,” https://interrupt.memfault.com/blog/emulating-
raspberry-pi-in-qemu , June 2023. 

https://interrupt.memfault.com/blog/emulating-raspberry-pi-in-qemu
https://interrupt.memfault.com/blog/emulating-raspberry-pi-in-qemu
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Figure 43: CREXDATA Simulator Executor and Statistics Collector significantly 
extending iFogSim 

Finally, because, in principle, there are categories of operators that are only deployable on 
the cloud, such as heavy-duty machine or deep learning operators and these operators 
introduce parallelization and CPU-GPU related execution trade-offs, we studied the 
statistical features and statistical properties that affect these categories of operators 
separately from the core operators of CREXDATA. In particular in [97] we statistically 
analyse the key factors affecting the execution performance of task(operator)-based 
workflows on a High Performance Computing (HPC) infrastructures composed of 
heterogeneous CPU-GPU clusters. Several results on interrelated factors regarding the 
execution options (physical execution implementation) of the task algorithm, dataset, 
devoted resources, and system utilization employed are revealed. We consider this statistics 
collection and analysis methodology as the first step towards an automated method to 
optimize task-based workflows in modern, high-compute capacity, CPU-GPU engines. 

5.5 Experimentation 

We measure the performance of ESC, GSP and RSS algorithms over a wide variety of 
network settings, from small (10s of sites) to medium (100s of devices) and large (1000s of 
devices) scale networks, using the TRAIN workflow from the well-known, highly cited RIoT 
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benchmark [109], illustrated in Figure 44. Please refer to [109] for further details on the 
utilized operators. Our experiments were run on a server with (a) 2 Intel Xeon Silver 4310 
processors with 12 cores and 24 threads each, (b) Four 64GB RAMs RDIMM 3200MT/s 
each, (c) One ROM 960GB SSD vSAS with read-intensive 12Gbps.  

 

Figure 44: TRAIN workflow used in our experimental evaluation14 

Figure 45a and Figure 45b provide a comparative analysis of the involved algorithms 
regarding their execution time and the goodness of the output physical plan, respectively. 
ESC and RSS were capped at 100 and 10 seconds, correspondingly. This means that if they 
have not output a physical plan by examining the entire search space by 100 or 10 seconds, 
respectively, they are enforced to output the best plan found so far. GSP has no such 
restriction since its execution time is always in the order of a few seconds. For reasons 
explained in Figure 45c, the parallelism of ESC is set to 10. Remarkably, RSS and GSP 
currently run with a parallelism of 1 since we want to also judge whether they are worthwhile 
to parallelize based on their execution time and goodness of provided solutions. As Figure 
45a and Figure 45b demonstrate, for an order of magnitude reduction in execution time 
(either due to the cap or without it) in Figure 45a, RSS approaches the goodness of ESC 
output physical plan, providing near optimal solutions. On the other hand, GSP is two to 
three orders of magnitude faster than RSS and GSP, correspondingly, but with a 
considerably suboptimal solution each time.  

Turning our attention to Figure 45c, we observe that the parallelism of ESC reaches the 
maximum number of examined physical plans and, thus, the portion of the entire search 
space that is inspected by the algorithm, when the parallelism is set to 10. This is because 
for more threads the benefits of examining multiple physical plans in parallel is outweighed 
by computational, thread synchronization barriers and locks on atomic variables. Therefore, 
in Figure 45a,b parallelism is set to 10.  

Another subtle algorithmic parameter for ESC is the size of queue size that will be used for 
enqueueing candidate physical plans for the various workers to dequeue and examine their 
performance. We experimented with different queue sizes ranging between 100*parallelism, 
1000*parallelism to 10000*parallelism. According to the plot of Figure 45d, the lowest 
execution time is incurred for queue size of 1000*parallelism. This is because for 
100*parallelism the queue is often left empty while, for 10000*parallelism, the execution time 
is negatively affected by memory to CPU communication lags.  

 

14 https://github.com/dream-lab/riot-bench  

https://github.com/dream-lab/riot-bench
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(a) 

 
(b) 

 
(c)  

(d) 

 

(e) 

Figure 45: Scalability Analysis and Parameter Tuning for the CREXDATA Algorithmic 
Suite (ESC, RSS, GSP Algorithms) 

Finally, we examine the potential benefit of parallelism for the RSS and GSP algorithms, 
which are currently both single threaded. As shown in Figure 45a, the execution time of GSP 
is not severely affected by increasing the network size. In the figure, we have an order of 
magnitude increase in execution time for three orders of magnitude increase in network size 
for GSP. On the other hand, Figure 45e shows the execution time of RSS for sample sizes 
of 1-4% for a search space composed of 158 physical plans (for a network of 15 devices and 
the workflow of Figure 44 which is composed of 8 operators). As plotted in the graph, the 
execution time of RSS exhibits a linear trend with the increase of the sampled search space. 
Consequently, parallelization plays an important role in the execution time of the algorithm 
over networks composed of 100s or 1000s of devices. Additionally, we expect that GSP will 
be worthwhile to parallelize for some workflows within the scope of CREXDATA which will 
be expectedly composed of more operators and higher branching factor in its operators. 
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6 Text mining for Event Extraction 

In this section we describe the text mining modules developed within the context of Task 4.5. 
In essence, we are describing the algorithms and language models behind these modules 
which have been developed to create a social media toolkit for real-time information 
extraction from multilingual text messages on social networks to support civil protection 
authorities in the face of weather-induced emergencies. 

Decision making and planning during weather emergency situations require authorities to 
study environmental conditions from different sources. This could include meteorological 
data, weather nowcasts, environmental sensors such as hydrological and forest fire 
emission sensors, and autonomous devices (e.g. drones or robots). While these sources 
offer valuable perspectives, obtaining real-time information from individuals directly involved 
in the emergency can improve response strategies. This information can be obtained from 
geolocated-social media posts published by local government agencies, first responders, 
bystanders, and affected persons sharing updates and alerts on the developing event. 

Acquiring and mining useful information about emerging events from social media poses 
several challenges, including volume of data, unstructured and ungrammatical (internet 
jargon) posts, and multilinguality. Large language models (LLMs) are a suitable solution to 
these challenges. Pretrained transformer-based multilingual models that utilise attention 
mechanisms can be fine-tuned to capture the nuances of the language used in the social 
media ecosystem. By leveraging these models, we can effectively identify informative social 
media posts. Subsequently, key information can be extracted from these posts for further 
analysis. 

The results in this section directly contribute towards the main objective (MO1.3) of 
CREXDATA. Specifically, in developing a multilingual large language model (MLLM) that will 
enable end users to monitor social networks for information on weather emergencies. To 
achieve this, a Bidirectional Encoder Representations from Transformers (BERT) model is 
fine-tuned using social media posts from real weather emergencies crawled mainly from X 
(Twitter) to identify relevant posts in connection with the emergency, also detecting and 
classifying the type of the event currently unfolding, specifically wildfires, and floods. The 
resulting model is equipped with an interface to a streaming pipeline built with Apache Kafka, 
to process social media posts in real-time after a trigger condition is met. Relevant posts are 
then served to a LLM-based question-answering (QA) system specifically designed to 
extract information from disaster-related text data. By enabling users to formulate focused 
queries regarding the unfolding event, the system aims to extract valuable insights. 

In the following subsections, we provide detailed descriptions of the BERT model used for 
event type prediction and the question answering model used for information extraction. 

 

6.1 BERT Based Event Type Classifier 

As discussed previously, the main goal is to monitor social media networks to identify, track 
and provide meaningful information from ongoing disasters, specifically fires and floods. To 
acquire social media posts the system needs access to the Application User Interface (API) 
of the end user's preferred social network. This social network should ideally be a 
microblogging platform with a focus on textual posts like Twitter, Mastodon, etc. Most of 
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these platforms no longer provide free API access, but rather paid tiers based on the 
frequency and number of downloaded posts. In choosing a social network to monitor, it is 
also important to study the population of the interested area to determine their preferred 
networks. For example, Twitter might be preferred in North America, while Facebook is 
preferred in Germany. For experimentation and proof of concept, social media posts about 
past weather emergencies from Twitter will be used to simulate real time post streaming 
from a social networking site. 

The first step of the system is to identify relevant posts. Relevance detection has been 
researched in previous works [110], but the relevance of a text is defined differently 
depending on the application. In the context of this task, a relevant post is one in which the 
person is speaking about an ongoing incident and providing information that can be used to 
assess the status of the event. On the other hand, posts that are not relevant may include 
sympathy, donation efforts, political discussions, or even conspiracy theories. After 
relevance detection, the next step is to classify the event type, which consists in analysing 
what type of incident the post is referring to (e.g. flood, fire). We explored the combination of 
both steps, into one text classification model which classifies posts as referring to a flood, 
fire, and none, where “none” refers to posts that are not relevant. 

 

 

Figure 46: Architecture 

6.1.1 System architecture 

In Figure 46, we show the overall system architecture. Once a trigger condition for a specific 
weather emergency is met, social media posts are collected from affected geographic areas. 
The streams of posts collected from those areas are then classified by event type using our 
fine-tuned event type classifier. The collected relevant posts may then be queried by the 
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question answering model in order to generate a summary of the event and retrieve posts 
that answer specific questions for the end user. 

Model 

Our first approach to the event classification process was to have two models: one that 
predicted relevancy and another that predicted event type. The idea was to use a lightweight 
model to quickly discard the non-relevant posts (the majority) and one bigger model that 
receives relevant posts and classifies them according to which event they are referring to. 
After some experimentation, we discovered that we could use the same lightweight model 
to select relevant posts and classify event types simultaneously. Combining both tasks into 
one model is more time-efficient and produces good results.  

The architecture of this model is based on mBERT, which is a BERT model trained using 
multilingual general-purpose text. BERT is a language model with ~100 million parameters 
that has been trained to predict missing tokens and on next sentence prediction [111]. It was 
introduced in 2018 and improved the state of the art in many natural language-based tasks. 
This pretrained model is usually further fine-tuned with task-specific data for other tasks such 
as text classification. This fine-tuning usually consists of training both the pretrained model 
and an additional classification head. 

Train Data 

The challenge with training text classification models is building an annotated dataset for the 
specific task, which is even more challenging when tackling multilinguality. We aim to cover 
as many languages as possible, although the number of languages supported is dependent 
on acquiring data related to fires and floods in the target languages. The currently focused 
languages are English, German, Spanish and Catalan. Our initial training dataset includes 
publicly available datasets from previous research on weather disasters detailed in D2.1. 
These datasets were mostly annotated for relevance to an event but not for event type 
classification. We convert this annotation by considering all relevant posts under a particular 
event as the type of that event (flood, or fire). Since most of these datasets are in English, 
we required more multilingual data. The following are some strategies we explored to acquire 
more data for the other languages. 

Data Generation 

We explored generating synthetic datasets by prompting generative LLMs. This solution has 
been explored for different purposes including training neural machine translation models. 
In our experiments. we used Mistral Ai’s 7 billion parameter model [112]. The model was 
provided with common keywords related to weather emergencies, and prompted to generate 
texts that resemble social media posts talking about those emergencies. We also tested 
providing some few shot post samples to the model. The resulting generated posts were 
very repetitive and lacking in ingenuity. We decided not to pursue generation as it could bias 
our model and reduce accuracy when combined with real data. 

Data auto-annotation 

Like in data generation, we explored the use of a generative LLM for zero shot text 
classification to auto-annotate social media posts for fine tuning. It has been shown that 
pretrained LLMs that have been instruction tuned (i.e. fine-tuned to respond to NLP 
instructions) perform reasonably for zero shot text classification which makes them useful 
for automatic data annotation [113]. We experimented using Mistral Ai’s 7 billion parameter 
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model for this purpose. The annotations produced by mistral 7B where comparable to 
annotations made by human annotators with above 80% accuracy. This method will be used 
to annotate more languages instead of manual annotations when necessary. 

Data Translation 

A common practice for dealing with data scarcity in multilingual tasks is generating synthetic 
data by using machine translation on an existing corpus in a different language. Datasets in 
a source language, most commonly in English, can be translated using neural machine 
translation (NMT) models into the other target languages. We have used this method to 
create synthetic datasets in German, Spanish, and Catalan. The data we had in English was 
translated to German15, Spanish16 and Catalan17 using state of the art open-source machine 
translation models. Because these datasets are not real-world datasets, we are manually 
annotating test datasets to evaluate the performance of models fine-tuned on the 
combination of real and synthetic data. 

Fine-tuning 

In state-of-the-art language modelling for natural language processing, models are 
pretrained on large datasets of general-purpose text, such as newspaper articles, Wikipedia 
articles, etc. which allows them to learn the semantics of natural language and embed 
general knowledge. This pretraining is very computationally expensive and time consuming. 
Once a model has been pretrained, it can be further trained (fine-tuning) for a specific NLP 
task by using smaller task specific datasets.  

In text classification, the common fine-tuning process usually involves training the pretrained 
model and the classification head simultaneously. This is the fine-tuning technique we are 
reporting on in the results section. There are other approaches that aim at reducing training 
time, such as freezing the layers of the pretrained model and just fine-tuning the classification 
head, or more sophisticated approaches such as LoRA [114], which aims to fine-tune a small 
set of the total parameters while not losing too much performance in the process. We 
explored layer freezing and LoRA and found LoRA to produce slightly worse results than 
common finetuning but with a 16% decrease in training time, while layer freezing produce 
significantly worse results without much decrease in training time in comparison to LoRA as 
shown in Table 8. All models were fine-tuned on high performance computing nodes with 4x 
NVIDIA Hopper H100 64GB GPUs and 2x Intel Xeon Platinum 8460Y 2.3GHz CPUs. 

 

 

 

 

 

 

 

15 https://huggingface.co/Helsinki-NLP/opus-mt-en-de 
16 https://huggingface.co/Helsinki-NLP/opus-mt-en-es 
17 https://huggingface.co/projecte-aina/aina-translator-ca-en 
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Table 8: Finetuning methods comparisons. The best performing result is indicated in 
bold. The second best is underlined for comparison 

Architecture 

Precision Recall F1 

Accuracy 
Training 

time  
(minutes) 

Fire Flood None Fire Flood None Fire Flood None 

mBERT 
(common) 

0.947 0.956 0.99 0.958 0.96 0.976 0.953 0.958 0.983 0.965 16.73 

mBERT 
(LoRA) 

0.968 0.939 0.929 0.965 0.938 0.933 0.966 0.938 0.931 0.946 14.03 

mBERT 
(frozen) 

0.539 0.658 0.66 0.819 0.282 0.703 0.65 0.395 0.681 0.597 13.85 

 

Test Data 

A percentage of our dataset which includes public datasets (mostly in English), and synthetic 
datasets (translated data) was reserved for testing and evaluation purposes. This test 
dataset was composed of about 30% of the dataset and was shuffled during every training 
process. It also consisted of mostly real datasets. Although this practice has yielded good 
results in the event type classification, we are working on human annotation of real data that 
will be used solely for testing, which will produce more reliable results. To ease the process 
of manual annotation, we are using the current best iteration of our event type classifier, to 
detect posts that are not relevant to a weather emergency, then only manually annotating 
those which are relevant to the event. 

6.1.2 Results 

For experimentation, we considered mBERT18 (BERT architecture), XLM-R19 (Roberta 
architecture with CommonCrawl20 dataset), and TwHIN21 (trained on social media 
messages) base models, and XLM-T22 fine-tuned on XLM-R base model with social media 
messages for sentiment analysis. Our focus is mBERT, but we include the other models 
because they alter the training process and/or modifying the source of the data used for 
training. For comparison, we use the precision, recall, f1 and accuracy metrics that are 
standard for text classification evaluation. 

In Table 9, we made a comparison of all the base models without fine-tuning and mBERT 
fine-tuning for event type prediction. Naturally, the base models perform poorly because they 
haven’t been trained for the task, with the TwHIN exception with an above average accuracy. 
This because TwHIN has been pretrained on social media messages and has gained 
knowledge on social media. The table also shows that the mean latency when using the 
models for classification is negligible even after fine-tuning. It is important to note that these 

 

18 https://huggingface.co/google-bert/bert-base-multilingual-cased 
19 https://huggingface.co/docs/transformers/en/model_doc/xlm-roberta 
20 https://commoncrawl.org/ 
21 https://huggingface.co/Twitter/twhin-bert-base 
22 https://huggingface.co/cardiffnlp/twitter-xlm-roberta-base-sentiment 

https://huggingface.co/docs/transformers/en/model_doc/xlm-roberta
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latency results are from a high-performance computing node with GPUs, as such they are 
better than they would be in lesser resource applications. 

 

Table 9: Comparison of base models with a finetuned model. The best performing 
result is indicated in bold. The second best is underlined for comparison 

Model name Precision Recall F1 Accuracy 
Mean 
latency 

mBERT 0.3461 0.3323 0.0489 0.0534 0.0135 

XLM-R 0.3900 0.3333 0.0969 0.1701 0.0133 

XLM-T 0.3081 0.3239 0.0856 0.1157 0.0133 

TwHIN 0.4014 0.3739 0.3414 0.5488 0.0155 

mBERT (Fine-tuned) 0.8800 0.9651 0.9180 0.9504 0.0136 

 

Next in Table 10, we show a comparison of the base models all fine-tuned with a dataset 
balanced according to classes (“flood”, “fire”, and “none”). The dataset is balanced to reduce 
bias to certain classes. The train set includes approximately 2500 social media messages in 
four different languages, German (DE), Spanish (ES), Catalan (CA), and English (EN), while 
the test set includes approximately 1200 messages in the same languages. 

The fine-tuned based models all have above 90% performance in all language and class 
precision with negligible differences. The differences lie in the precision of the fire and flood 
classes between models pretrained with general-purpose text (mBERT, XLM-R) and those 
trained with Twitter data (XLM-T, TwHIN). The latter models show a precision increase for 
the fire and flood classes, resulting in a higher F1 score. Our hypothesis for these results is 
that XLM-T and TwHIN, having been pretrained with Twitter data, are more attuned to 
informal language and social media jargon. 

In terms of language, the models show comparably a slightly better performance in English, 
probably because English being the dominating language on internet, these models are 
pretrained on more English samples than other languages. 

 

6.2 Question Answering for Event Information Extraction 

During disasters, a critical need arises for timely and accurate information. Emergency 
responders, policymakers, and the general public all rely heavily on this information to guide 
their actions. However, the event of a disaster often brings a vast amount of text data (e.g. 
news reports, social media updates, etc.) creating a complex information landscape. Sifting 
through this overwhelming volume of data to find specific, important details can be a 
challenging task, hindering effective response and recovery efforts. 

To address this challenge, we propose a novel Question Answering (QA) method. Our 
system aims to extract crucial information from disaster-related text data by enabling users 
to ask focused questions about the unfolding event. By providing clear and concise answers, 
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the QA system could serve as a powerful tool to improve information access and 
communication during critical times, empowering informed decision-making. 

 

Table 10: Comparison of base models fine-tuned for event type prediction 

Architecture Language 
Precision Recall F1 

Accuracy 
Fire Flood None Fire Flood None Fire Flood None 

mBERT 

DE 0.955 0.942 0.99 0.941 0.966 0.977 0.948 0.954 0.983 0.962 

CA 0.967 0.934 0.971 0.938 0.959 0.975 0.952 0.946 0.973 0.957 

ES 0.964 0.929 0.981 0.928 0.97 0.977 0.945 0.949 0.979 0.958 

EN 0.947 0.956 0.99 0.958 0.96 0.976 0.953 0.958 0.983 0.965 

XLM-R 

DE 0.971 0.941 0.957 0.977 0.963 0.926 0.974 0.952 0.941 0.957 

CA 0.96 0.941 0.961 0.976 0.953 0.934 0.968 0.947 0.948 0.954 

ES 0.97 0.931 0.958 0.976 0.962 0.924 0.973 0.947 0.941 0.953 

EN 0.975 0.948 0.958 0.974 0.965 0.941 0.974 0.956 0.949 0.96 

XLM-T 

DE 0.965 0.961 0.958 0.992 0.953 0.936 0.978 0.957 0.947 0.962 

CA 0.947 0.969 0.959 0.988 0.941 0.947 0.967 0.955 0.953 0.958 

ES 0.963 0.953 0.956 0.986 0.954 0.935 0.974 0.953 0.946 0.958 

EN 0.971 0.965 0.948 0.981 0.953 0.95 0.976 0.959 0.949 0.962 

TwHIN-BERT 

DE 0.978 0.953 0.953 0.985 0.958 0.94 0.981 0.955 0.947 0.962 

CA 0.957 0.962 0.958 0.985 0.942 0.95 0.97 0.952 0.954 0.959 

ES 0.979 0.948 0.958 0.983 0.958 0.944 0.981 0.953 0.951 0.961 

EN 0.977 0.962 0.958 0.984 0.959 0.953 0.98 0.96 0.956 0.966 

 

6.2.1 Methodology 

With the rise of Large Language Models (LLMs), a great amount of research focused on how 
to leverage LLMs for information retrieval tasks, such as zero-shot retrieval. Early methods 
compared each query-document pair with a score, picking the highest-scoring ones. 
Researchers have improved these methods by adding more context, using LLMs to generate 
extra queries, summaries, or relevant details. This enrichment significantly boosted retrieval 
performance, especially for unseen (zero-shot) queries. 

Typically, retrieval systems embed queries and documents in a shared space for efficient 
searching. While recent methods leverage LLMs to enrich retrieval in various ways, the 
ability to improve the results of the retriever, based on the re-ranking stage remains limited. 
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Additionally, LLMs can generate inaccurate content, and their performance can be affected 
by factors like prompt order. 

To address these issues, some studies [115] [116] propose using LLMs as relevance 
assessors, providing individual assessments for each query-document pair. These 
approaches aim to enhance trustworthiness by leveraging the LLM's strengths in 
understanding nuances and identifying potentially irrelevant content. 

However, most existing methods treat retrieval and relevance assessment as separate 
tasks, missing potential benefits from combining them. Our approach bridges this gap by 
merging individual rankings from separate retrieval and relevance assessment stages using 
rank aggregation techniques. This allows our method to exploit the strengths of both stages, 
leading to a more accurate final ranking of retrieved documents. 

 

 

Figure 47 The system architecture of the QA model 

 

System Architecture 

In Figure 47, we present the proposed approach, which consists of three main steps. Initially, 
the retriever leverages LLM-generated query-relevant passages to identify candidate 
documents from the corpus. Subsequently, the retrieved documents undergo an LLM-based 
relevance assessment, where only documents deemed relevant by the LLM progress to the 
next stage. Then, for each document, a separate ranking is produced. Finally, a rank 
aggregation technique merges individual rankings leading to a more accurate final ranking. 
Notably, our approach relies on LLM inference for both retrieval and relevance assessment, 
without the need for separate training steps. Below, we describe each step in detail. 

Passage Generation 

Building upon prior work [117] that highlights the advantages of enriched query and 
document representations, our method focuses on expanding the query beyond its original 
form by incorporating additional context. This is achieved by instructing a LLM to generate a 
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set (denoted N) of informative passages that capture the underlying intent and context of the 
user's query. 

Similar to the approach [117], we then encode these generated passages using a pretrained 
encoder to obtain a dense vector representation for the enhanced query. This representation 
is calculated by averaging the encoded vectors of each individual passage within the set N. 
By aggregating the representations of the generated passages, we can obtain a more 
comprehensive query representation for the retrieval process. This enriched representation 
is used as the query in order to retrieve the k most relevant documents from the collection. 

Relevance Assessment 

Following recent work [115] that explores the potential of LLMs in improving retrieval quality 
through relevance assessments, we introduce a straightforward LLM-based relevance 
assessment mechanism. 

Given the initial document ranking, we aim to select a subset of documents while preserving 
their relative order. However, our primary objective is to guarantee that documents 
containing the correct answer are included and prioritized within this filtered set. To achieve 
this, we use a LLM to generate a binary relevance judgment ("yes" or "no") for each 
document. In simpler terms, for a given query, we instruct the LLM to determine if each 
document within the top retrieved documents can potentially provide an answer to the query. 

Furthermore, the LLM generates relevance judgments sequentially, meaning each 
document is assessed independently. The LLM receives the query concatenated with the 
document itself as input for its judgment. Only the top-m documents with a positive ("yes") 
relevance judgment progress to the next stage. 

Rank Aggregation 

With the help of passage generation and relevance assessment, we obtain a refined 
document set, containing a selection of highly relevant documents. Our method then 
performs a two-stage ranking aggregation process to improve the overall retrieval accuracy. 
The first stage involves computing individual rankings for each document within the refined 
set. In the second stage, we aggregate these individual rankings into a single, more robust 
final ranking. In this way, we aim to improve the diversity of the rankings and reduce the 
impact of documents incorrectly placed at high rank positions by an individual ranker [118]. 

Implementation 

To promote code reproducibility and transparency, we implemented our system and the 
baseline retrieval methods using PyTorch23, a popular deep learning framework. We further 
used PyFlagr24, a library specifically designed for rank aggregation techniques. Furthermore, 
we opted for open-source LLMs that are publicly available through Huggingface25. 
Specifically, we conducted experiments using Solar26 and Mistral27. Our implementation 
utilizes the pre-built BM25 and Contriever indexes from the Pyserini28 toolkit. 

 

23 https://pytorch.org/ 
24 https://flagr.site/ 
25 https://huggingface.co/ 
26 https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0 
27 https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2 
28 https://github.com/castorini/pyserini/ 

https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0
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Our experiments were conducted on a workstation equipped with two high-performance 
Nvidia RTX A6000 GPUs, each with 48GB of memory, and a AMD Ryzen Threadripper PRO 
3955WX CPU. 

6.2.2 Experiments 

Summarizing Crisis Events 

We assessed the performance of our approach on the CrisisFACTS 2022 task29. This task 
focuses on generating daily summaries for short-term crisis events by consolidating factual 
information from social media and news data relevant to pre-defined queries. Given a set of 
queries and documents, the objective is to return a list of k most relevant text snippets 
("facts") alongside their importance scores. 

The CrisisFACTS dataset provides multi-stream data with ground truth summaries sourced 
from trusted sources including ICS-2009, Wikipedia, and NIST. We used Rouge-2 F1-Score 
and BERT-Score metrics to evaluate the effectiveness of our approach. We compared our 
method against the top-performing systems from the CrisisFACTS 2022 challenge, namely, 
"unicamp" and "ohmkiz". 

System configuration 

Within our system configuration, Contriever was utilized for the initial document retrieval 
stage. The Solar LLM was used to generate ten candidate passages per query for query 
expansion. The LLM-based relevance assessment was configured to consider the top-5 
candidate documents. Finally, a linear rank aggregation technique was employed to merge 
the individual rankings. 

Results 

Our approach achieves competitive performance on the CrisisFACTS dataset, as shown in 
Table 11. BERT-Score and ROUGE-F1 metrics indicate fluency and factual accuracy 
comparable to the best existing methods. This strong performance is consistent across all 
ground truth summaries, even surpassing all other methods in some cases.  
 
Unlike existing methods like ohmkiz that require fine-tuning on question-document pairs or 
unicamp which relies on non-public OpenAI APIs, our method operates entirely in an 
unsupervised manner and uses readily available, open-source LLMs. In this way our 
approach fosters broader adoption and replicability within the research community. 
 
 
 
 
 
 
 
 
 
 
 

 

29 https://crisisfacts.github.io/ 
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Table 11: Results on the CrisisFACTS 2022 dataset. The best performing result is 
indicated in bold. The second-best is underlined for comparison 

 

WIKI NIST ICS 

 

Bert Rouge Bert Rouge Bert Rouge 

unicamp 53.2 02.8 55.7 13.3 45.9 05.8 

ohmkiz 56.4 03.6 56.4 14.7 45.0 05.1 

HyDE 53.2 03.0 53.1 11.1 44.4 04.0 

Ours 54.0 03.1 56.1 12.6 46.1 04.5 

 

 

Passage Ranking 

Moving beyond the disaster-related benchmarks, we also assessed the performance of our 
approach in a number of different retrieval tasks. Specifically, we evaluate our method on 
the TREC 2019 and 2020 [119] Deep Learning Tracks (DL19 and DL20), and five datasets 
from the BEIR [120] benchmark (Covid, News, NFCorpus, Signal, and Touche). We directly 
evaluated the performance of our method on the designated test sets for each dataset. 
Following established evaluation practices, we report MAP, nDCG@10, Recall@10, and 
Recall@100 for DL19 and DL20, while nDCG@10 is used for the BEIR datasets. 
 
As we emphasize on zero-shot retrieval, we selected baselines that operate without labeled 
data. These baselines represent distinct retrieval approaches: BM25 serves as a lexicon-
based zero-shot method, and Contriever as a dense retrieval approach. To ensure a 
comprehensive evaluation, we additionally include HyDE  [117], a state-of-the-art LLM-
based retrieval technique. 
 

Results 

In Table 12 we can see that our method consistently outperforms the baseline methods on 
both TREC Deep Learning Tracks (DL19 and DL20) datasets. Notably, our method achieves 
statistically significant improvements of 0.5 to 7.4 percentage points in MAP and nDCG@10 
compared to the LLM-based competitor, HyDE. It is worth mentioning that our approach 
outperforms HyDE on all metrics except Recall@10 (R@10) on DL20. These findings 
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highlight the effectiveness of our approach, which leverages the combined power of 
relevance judgments and rank aggregation to achieve better retrieval performance. 
 

Table 12: Results on DL19 and DL20. The best performing result is indicated in bold. 
The second best is underlined for comparison 

 

DL19 DL20 

 

MAP nDCG@10 R@10 R@100 MAP nDCG@10 R@10 R@100 

BM25 30.1 50.6 17.8 45.2 28.6 48.0 16.9 55.8 

Contriever 24.0 44.5 14.1 48.9 24.0 42.1 23.1 51.4 

HyDEmistral 38.2 54.8 22.5 57.4 33.0 49.5 26.8 59.6 

HyDEsolar 37.4 55.4 22.3 56.9 32.7 52.8 30.2 62.3 

Ours(BM25)mistral 38.4 60.4 23.5 55.4 32.4 52.1 26.5 60.9 

Ours(BM25)solar 35.5 57.2 20.3 55.9 34.2 52.0 26.9 62.3 

Ours(CR)mistral 39.1 56.6 22.7 57.5 33.8 51.5 29.7 60.4 

Ours(CR)solar 42.3 62.8 25.4 58.5 34.7 53.3 28.5 61.4 

 

Similar behaviour is observed on the BEIR benchmark datasets in Table 13. When combined 
with either BM25 or Contriever for initial retrieval, our approach consistently surpasses all 
other methods across all five datasets. While HyDE occasionally exhibits comparable 
performance, particularly on the NFCorpus dataset, it often falls behind our method by a 
significant margin. 
 
Comparing the results of combining our approach with different retrievers, it seems that 
BM25 leads more consistently to good results. Employing Contriever performs very well in 
some datasets, but not so well in others. 
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Table 13: Results on BEIR. Best performing is marked bold. The second-best is 
underlined for comparison 

(nDCG@10) Covid News NFCorpus Signal Touche 

BM25 59.4 39.5 30.7 33.0 44.2 

Contriever 27.3 34.8 31.7 23.3 16.6 

HyDEmistral 55.9 34.3 30.8 21.6 14.9 

HyDEsolar 56.7 35.1 31.3 21.5 15.0 

Ours(BM25)mistral 61.2 40.9 31.5 33.4 44.7 

Ours(BM25)solar 61.5 41.2 32.3 33.6 45.4 

Ours(CR)mistral 58.4 40.7 26.7 17.9 18.3 

Ours(CR)solar 63.4 41.4 31.9 18.1 18.9 

 

Furthermore, our experiments revealed that Solar exhibited marginally superior overall 
performance compared to Mistral. This difference could be attributed to the model size, with 
Solar consisting of 10 billion parameters compared to Mistral's 7 billion. 
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7 Progress achieved towards the CREXDATA objectives 

 
This deliverable documented the progress of CREXDATA Work Package 4 for the first half 
of the project. Work Package 4 focuses on advanced learning and forecasting methods that 
can be executed at scale. The first task of the Work Package (T4.1) is to develop forecasting 
techniques that cover longer horizons and reach deeper into the future. Towards this end, 
we presented an expressive forecasting engine and an (online) optimization method for this 
engine which can help in determining the proper configuration settings. This will enable us 
to optimize the engine for deeper horizons. We also presented initial forecasting results for 
the maritime use case. The goal of the second task (T4.2) is to develop algorithms for guiding 
large-scale simulations towards desired ends. We presented the simulation scenarios from 
all three CREXDATA use-cases and a discussion of the methods to be applied for 
interactively exploring the parameter space of the CREXDATA simulators. Another goal of 
Work Package 4 is to develop bandwidth-efficient algorithms for federated learning (T4.3). 
We presented a novel bandwidth-efficient technique for Federated Deep Learning and 
demonstrated its advantage over previous solutions, as well as its applicability in computer 
vision, which is of crucial importance for the weather emergency use case. CREXDATA also 
needs to build a scalable, high-throughput service for the optimized execution of distributed 
data analytics over the cloud. This is the work of T4.4. We presented an approach which 
optimizes the execution of arbitrarily many workflows over arbitrarily many devices, under 
arbitrarily many physical execution options in volatile streaming and network settings. The 
final task of Work Package 4 (T4.5) is to build a robust multi-lingual system that will be able 
to support decision making by extracting information from multiple social media. We 
presented language models developed for monitoring and extracting key information about 
weather emergencies from social media messages. 
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8 Acronyms and Abbreviations 

 

Each term should be bulleted with a definition.  

Below is an initial list that should be adapted to the given deliverable. 

- BO – Bayesian Optimization 
- CA – Consortium Agreement 
- CEF – Complex Event Forecasting 
- CEP – Complex Event Processing 
- CER – Complex Event Recognition 
- D – deliverable 
- DoA – Description of Action (Annex 1 of the Grant Agreement) 
- EB – Executive Board 
- EC – European Commission 
- ESC - Exhaustive Search with Counting 
- GA – General Assembly / Grant Agreement 
- GoG - Graph of Graphs 
- GSP - Greedy Search Progressive 
- HPC - High Performance Computing 
- MCC – Mathews Correlation Coefficient 
- RSS - Random Sampling Search 
- SREMO – Symbolic Register Expression with Memory and Output 
- SRT – Symbolic Register Transducer 
- UDF - User Defined Function 
- WP – Work Package 
- WPL – Work Package Leader 
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10  Appendix 1 

10.1 Appendix for Online Optimization of Complex Event 
Forecasting 

10.1.1 RTCEF services 

We present with more details the processing of each service comprising our framework. 
Synchronisation of the various services is denoted by dotted arrows in Figure 3. 

Collector. As mentioned earlier, the collector service is responsible for organising and 
storing up-to-date datasets from the input stream. Therefore, the collector service consumes 
the input stream (see `Data collection' in Figure 3), in parallel to the forecasting engine, and 
stores subsets of it in time buckets of fixed bucket_size. The collector collects data in a sliding 
window manner, i.e., it creates a dataset version using the last dt_size buckets from the 

current time. A new dataset version, containing the bucket range (e.g., [Bucket56, Bucket59]), 
is created and emitted to the `datasets' topic as soon as the last bucket in the range is full. 
Old buckets that no longer serve a purpose, i.e. they are not part of a dataset to be or being 
used by the factory service, are deleted for space economy. 

Forecasting Engine. The forecasting engine, as illustrated at the top part of Figure 3, 
consumes the input stream and produces CE forecasts as well as forecast performance 
metrics. The distance between two consecutive reports is controlled by the reports_distance 
parameter. Each performance report concerns the last batch of the input stream since the 
previous report—this batch has equal size to the reports_distance parameter. Report 

contents include, the number of True Positives (TP), True Negatives (TN), False Positives 
(FP), and False Negatives (FN), as well as the MCC value and a timestamp of the report. 
Reports are fed into the ‘reports’ topic and subsequently consumed by the ‘observer’ service. 
In addition to the above, Wayeb monitors the `Models' topic for new model versions. When 
a new model is available, Wayeb replaces its model with the latest available version. 

Observer. The observer service monitors the performance of the forecasting engine and 
produces `retrain' or `optimise' instructions as indicated by the policy of  Algorithm , which 
works as follows. The observer, consumes a new score from the reports topic (see top right 
of Figure 3) and retains up to 𝑘 recent scores  (lines 4-5)—in our case each score is an MCC 
value. Then the observer will compute the first degree polynomial fc(x) = acx + bc (a trend 

line) so that ac and bc minimize the following squared error E  =   ∑ |f(xj)  −  yj|
j=k
j=0  for x_j = j 

and 𝑦𝑗 = 𝑠𝑐𝑜𝑟𝑒𝑐−𝑘+𝑗, where 𝑐 is an increasing integer denoting the id of the current score 

(lines 9,10). If the slope (ac) of fc(x) is negative (indicating decrease in performance) and 
less than a max_slope ∈  R− parameter (line 11) then a `retrain' instruction is produced and 
fed into the ̀ instructions' topic (lines 15-17). Intuitively, forecasting performance deterioration 
shortly after a new model deployment (i.e., ac  <  max_slope), indicates that the model failed, 
and optimisation should thus be performed. Consequently, we place each newly deployed 
model in a guard period (lines 14,17). A guard period starts after a model is deployed, and 
ends after guard_n performace reports. If the performance of a model under a guard period 

deteriotes (ac  <  min_slope) then an optimisation instruction is produced and fed into the 
‘instructions’ topic (lines 12,13). If on the other hand, ac  <  min_slope is satisfied after 

guard_n reports, then a ‘retrain’ instruction is produced for which a new ‘’guard’’ period 
begins. Finally, to avoid pitfalls whereby the score drops suddenly very low, we employ an 
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additional condition: if the score of a report is lower than a threshold min_score (line 6) then 
the observer asks directly for ‘optimisation’ and  omits a ‘retrain’ instruction. 

Algorithm 5: Observer service 

 

 

Controller. The controller service controls model update procedures. To do so, the 
controller, reads messages from the ‘instructions’ topic containing either ‘retrain’ or 
‘optimisation’ instructions. Then, accordingly, it requests the model factory service to 
produce a model via retraining, or initialises an optimisation procedure.   

Retrain. In this case the controller sends a ‘train’ command along with the currently best 
hyper-parameters. These hyper-parameters are either retrieved from the last optimisation 
procedure, or provided by users if no optimisation has been performed yet. 

Optimisation. Bayesian Optimisation (BO) requires a few samples obtained through micro-
benchmarks (see Background). Therefore when optimisation is required, the controller 
service initiates a message exchange that works as follows. First, the controller sets up the 
optimiser. Similar to [121], we leverage micro-benchmarks from previous runs. More 
specifically, using the 𝑟𝑒𝑡𝑎𝑖𝑛_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  ∈  [0,1] parameter, we uniformly keep 
⌊𝑟𝑒𝑡𝑎𝑖𝑛_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒  ∗  𝑎𝑙𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠⌋ observations from the last executed BO run, where 

𝑎𝑙𝑙_𝑠𝑎𝑚𝑝𝑙𝑒𝑠 is the total number of micro-benchmarks. This allows us to skip the initial 
sampling step of BO, accelerate optimisation, and retain useful information from previous 
runs. In addition to the above, the controller sends to the factory an initilisation message so 
that the appropriate resources are reserved. Then, the controller and the factory enter into 
the ‘step phase’. During the step phase the controller sends ‘train & test’ commands to the 
factory along with the hyper-parameters suggested by the acquisition function. After each 
‘train & test’ command the controller awaits the corresponding performance report i.e., the 
value of the 𝑆𝑐𝑜𝑟𝑒(𝑐) objective function. Upon receiving the performance report, the 
optimiser is updated with the new sample and the next hyper-parameters are suggested for 
the next step. The step phase ends when all micro-benchmarks are completed. Finally, once 
all micro-benchmarks are completed and the best hyper-parameters are acquired, the 
controller sends a finalisation message to the factory containing the ID of the best model. At 
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the same time, the controller updates the previously best hyper-parameters with the newly 
acquired ones, ensuring availability of the latter for subsequent ‘retrain’ instructions. 

Model factory. The model factory service trains, tests and sends models to the forecasting 
engine. Moreover, the factory reads dataset versions from the `Datasets' topic and 
assembles temporary datasets using the received bucket ranges (included in a dataset 
version message). Upon receiving a ‘train’ command the factory trains a model on the latest 
assembled dataset and sends a new model version to the ‘Models’ topic. Concerning 
production of models through optimisation, the factory first ‘locks’ the most recent assembled 
dataset so that the same dataset is used throughout the optimisation procedure. Then it 
trains, saves and tests candidate models on the locked dataset and reports prediction 
performance metrics to the controller.  Finally, once optimisation is completed, the factory 
sends a new model version to the ‘Models’ topic along with its production time. It is only at 
this point, that the CEF engine will stop momentarily for model replacement. 

 

10.1.2 Financial experiments 

Experimental setup 

Credit card fraud management. We use a synthetic dataset provided by Feedzai30 
containing 1M credit card transaction events taking place over a period of 82 weeks. Each 
event contains, among others, the card ID, the amount and time of the transaction. We 
evaluate RTCEF on a pattern, representing a fraudulent behaviour as a sequence of 
consecutive increasing transactions [122]: 

Rcards  ≔  (𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑖𝑓𝑓  >  0) ⋅ (𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑖𝑓𝑓  >  0) ⋅ (𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑖𝑓𝑓  >  0) ⋅ 

                                      (amountDiff  >  0) ⋅ (amountDiff  >  0) ⋅ (amountDiff  >  0) ⋅ 

(𝑎𝑚𝑜𝑢𝑛𝑡𝐷𝑖𝑓𝑓 >  0) 

We enrich events of the input stream with an additional attribute amountDiff which is equal 

to the difference between the previous transaction and the current one. Therefore Rcards is 
satisfied when 8 consecutive transactions happen with increasing amounts. In order to 
simulate evolving fraud, we modify the financial dataset by changing randomly every 4 to 8 
weeks the range of the highly correlated feature amountDiff. Similar to the maritime dataset, 

for validating our results, we create 21 datasets (FDi,  i  ∈  [0,20]) by shifting 4 weeks the start 
of each dataset in a cyclic manner.  

Experimental results 

Financial fraud management. Figure 48 left, shows that for FD0 RTCEF overcomes input 
data evolutions, and significantly outperforms the offline approach. A similar pattern can be 
observed also for dataset FD8 (Figure 48 right), where changes in the input drop the MCC 
score of the offline approach to almost 0. Again in this case, RTCEF,  adapts and maintains 
overall a steady MCC over time. An interesting experiment, is that of dataset FD1 (Figure 48 

middle). Here, after optimisation is requested on week 26, RTCEF produces steadily an MCC 
score of ~0.75. Conversely, the offline approach on weeks 35-55 and 61-71 produces a 
score of ~0.85, thus outperforming RTCEF. In this case, RTCEF fails to detect input stream 
data evolutions as after week 26 there are no major fluctuations in forecasting performance. 

 

30 https://feedzai.com 
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Figure 49 bottom, shows that for FD1 our framework has slightly less average 𝑀𝐶𝐶, than the 

offline approach. However, for all other datasets FDi, RTCEF significantly outperforms the 
offline approach (see Figure 49). 

 

Figure 48: Experimental results for datasets FD{0/3/5} with Rcards. 'rt' and 'opt' 
denote 'retrain' and 'optimisation'. Upper plots show MCC over time, while lower 

plots show improvement 

 

 

Figure 49: Avg MCC per FDi for Rcards 

  

 

 

 

 

 

 

 


